Modeling and Monte Carlo simulation of nucleation and growth of UV/low-temperature-induced nanostructures

A model for ultraviolet induced chemical vapor deposition (UV CVD) for a-SiN:H is described. In the simulation of UV CVD process, activate charged centers creation, species incorporation, surface diffusion, and desorption are considered as elementary steps for the photonucleation and photodeposition mechanisms. The process is characterized by two surface sticking coefficients. Surface diffusion of species is modeled with a gaussian distribution. A real time Monte Carlo method is used to determine photonucleation and photodeposition rates in nanostructures. Comparison of experimental versus simulation results for a-SiN:H is shown to predict the morphology temporal evolution under operating conditions down to atomistic resolution.