Dynamics of a hyperchaotic Lorenz-type system

This paper discusses the complex dynamics of a new four-dimensional continuous-time autonomous hyperchaotic Lorenz-type system. The local dynamics, such as the stability, pitchfork bifurcation, and Hopf bifurcation at equilibria of this hyperchaotic system are analyzed by using the parameter-dependent center manifold theory and the normal form theory. The existence of homoclinic and heteroclinic orbits of this hyperchaotic system is further rigorously studied. More exactly, under some special parameter conditions, the fact that this hyperchaotic system has no homoclinic orbit but has two and only two heteroclinic orbits are proved.

[1]  O. Rössler An equation for hyperchaos , 1979 .

[2]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[3]  H. Haken,et al.  Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[4]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[5]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[6]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[7]  Qin Tuan-fa,et al.  SYNCHRONIZING SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICES VIA ACTIVE-PASSIVE DECOMPOSITION , 1998 .

[8]  A. Tamasevicius,et al.  Hyperchaos in coupled Colpitts oscillators , 2003 .

[9]  W. T. Rhodes,et al.  Communicating with hyperchaos: The dynamics of a DNLF emitter and recovery of transmitted information , 2003 .

[10]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[11]  Guanrong Chen,et al.  On homoclinic and heteroclinic orbits of Chen's System , 2006, Int. J. Bifurc. Chaos.

[12]  Guanrong Chen,et al.  A Novel hyperchaotic System and its Complex Dynamics , 2008, Int. J. Bifurc. Chaos.

[13]  Qigui Yang,et al.  Hyperchaotic attractors from a linearly controlled Lorenz system , 2009 .

[14]  Gheorghe Tigan,et al.  Heteroclinic orbits in the T and the Lü systems , 2009 .

[15]  Qigui Yang,et al.  A hyperchaotic system from a chaotic system with one saddle and two stable node-foci , 2009 .

[16]  Emad E. Mahmoud,et al.  Synchronization and control of hyperchaotic complex Lorenz system , 2010, Math. Comput. Simul..

[17]  Qigui Yang,et al.  Dynamics of a new Lorenz-like chaotic system , 2010 .

[18]  Guanrong Chen,et al.  A new hyperchaotic Lorenz‐type system: Generation, analysis, and implementation , 2011, Int. J. Circuit Theory Appl..

[19]  Li Feng,et al.  Hopf bifurcation analysis and numerical simulation in a 4D-hyoerchaotic system , 2012 .

[20]  Robert A. Van Gorder,et al.  Shil’nikov chaos in the 4D Lorenz–Stenflo system modeling the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere , 2013 .

[21]  Shaolin Tan,et al.  Explicit ultimate bound sets of a new hyperchaotic system and its application in estimating the Hausdorff dimension , 2013 .

[22]  S. Effati,et al.  Hyperchaos control of the hyperchaotic Chen system by optimal control design , 2013 .

[23]  R. A. Gorder,et al.  Competitive modes for the Baier–Sahle hyperchaotic flow in arbitrary dimensions , 2013 .

[24]  S. Effati,et al.  Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems , 2014 .