Calcium-phospholipid-dependent protein kinase (PKC) has long been suggested to play an important role in modulating synaptic efficacy. We have created a strain of mice that lacks the gamma subtype of PKC to evaluate the significance of this brain-specific PKC isozyme in synaptic plasticity. Mutant mice are viable, develop normally, and have synaptic transmission that is indistinguishable from wild-type mice. Long-term potentiation (LTP), however, is greatly diminished in mutant animals, while two other forms of synaptic plasticity, long-term depression and paired-pulse facilitation, are normal. Surprisingly, when tetanus to evoke LTP was preceded by a low frequency stimulation, mutant animals displayed apparently normal LTP. We propose that PKC gamma is not part of the molecular machinery that produces LTP but is a key regulatory component.