Low-angle tracking of two objects in a three-dimensional beamspace domain

Among various low-angle tracking methods, the three-dimensional beamspace domain maximum likelihood (3-D BDML) estimation proposed by Zoltowski is a computationally attractive and optimal method that can be processed in the reduced beamspace domain. However, the estimation performance of 3-D BDML deteriorates in the presence of interference or an additional target, especially at low altitudes, because the dimension of the signal and noise exceeds the dimension provided by the three beams. This study proposes a new low-angle tracking method for two objects in a 3-D beamspace domain using a linearly constrained adaptive array. The increased signal dimension owing to the interference or the additional target is reduced in the beamspace domain by using the beamforming weight that is designed to remove the largest principal component in the covariance matrix. Numerical simulation results are provided to show the estimation performance of the proposed method.

[1]  D. K. Barton Low-angle radar tracking , 1974 .

[2]  H. D. Griffiths,et al.  Mode-space spatial spectral estimation for circular arrays , 1994 .

[3]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[4]  Michael D. Zoltowski,et al.  Beamspace DOA estimation featuring multirate eigenvector processing , 1996, IEEE Trans. Signal Process..

[5]  Z. Tian Beamspace iterative quadratic WSF for DOA estimation , 2003, IEEE Signal Process. Lett..

[6]  Marius Pesavento,et al.  One- and two-dimensional direction-of-arrival estimation: An overview of search-free techniques , 2010, Signal Process..

[7]  J. A. Bruder,et al.  Multipath effects on low-angle tracking at millimetre-wave frequencies , 1991 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Michael D. Zoltowski,et al.  Beamspace Root-MUSIC , 1993, IEEE Trans. Signal Process..

[10]  K.-B. Yu Recursive super-resolution algorithm for low-elevation target angle tracking in multipath , 1994 .

[11]  J. Litva,et al.  Use of a highly deterministic multipath signal model in low-angle tracking , 1991 .

[12]  Samuel M. Sherman,et al.  Monopulse Principles and Techniques , 1984 .

[13]  Eloi Bosse,et al.  Model-based multifrequency array signal processing for low-angle tracking , 1995 .

[14]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1998 .

[15]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[16]  L. Varshney Radar Principles , 2005 .

[17]  Chongying Qi,et al.  DOA Estimation for Coherent Sources in Unknown Nonuniform Noise Fields , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[18]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[19]  Petre Stoica,et al.  Maximum likelihood methods for direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[20]  Michael D. Zoltowski,et al.  Maximum likelihood based sensor array signal processing in the beamspace domain for low angle radar tracking , 1991, IEEE Trans. Signal Process..

[21]  Mustapha Djeddou,et al.  Maximum likelihood angle-frequency estimation in partially known correlated noise for low-elevation targets , 2005, IEEE Transactions on Signal Processing.

[22]  D. Calvetti,et al.  AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .

[23]  W.D. White,et al.  Low-Angle Radar Tracking in the Presence of Multipath , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Erkki Oja,et al.  Jammer suppression in DS-CDMA arrays using independent component analysis , 2006, IEEE Transactions on Wireless Communications.

[25]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[26]  Louis L. Scharf,et al.  Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise , 2002, IEEE Trans. Signal Process..

[27]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[28]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[29]  G. Trunk,et al.  Maximum Likelihood Elevation Angle Estimates of Radar Targets Using Subapertures , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[30]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[31]  S. Haykin Least squares adaptive antenna for angle of arrival estimation , 1984, Proceedings of the IEEE.

[32]  Mohammad Mahdi Nayebi,et al.  Robust low-angle estimation by an array radar , 2010 .