Hardware-Efficient Qubit Control with Single-Flux-Quantum Pulse Sequences

Single-flux-quantum (SFQ) digital logic is an attractive candidate for classical control and monitoring of large-scale quantum processors based on superconducting qubits. The authors describe a control approach based on repeated irradiation of the qubits with short registers of classical bits, which can be stored locally in compact SFQ registers and streamed to the quantum array at a high rate. Numerical simulations show achievable gate fidelity in excess of 99.99%; moreover, the approach allows control of many qubits resonating at different frequencies with a single, global SFQ clock. As a result, the scheme is well matched to the control of a scalable two-dimensional surface code.

[1]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[2]  O. A. Mukhanov,et al.  Quantum–classical interface based on single flux quantum digital logic , 2017, 1710.04645.

[3]  A. J. Short,et al.  Fidelity of single qubit maps , 2002 .

[4]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[5]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[6]  Andrew G. Glen,et al.  APPL , 2001 .

[7]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[8]  Alexander Opremcak,et al.  Digital Coherent Control of a Superconducting Qubit , 2018, Physical Review Applied.

[9]  John M. Martinis,et al.  Rolling quantum dice with a superconducting qubit , 2014, 1406.3364.

[10]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[11]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[12]  C. K. Andersen,et al.  Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication , 2017, 1709.01030.

[13]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[14]  A. Korotkov,et al.  Quantum feedback control of a superconducting qubit: Persistent Rabi oscillations , 2012, 1205.5591.

[15]  R. Feynman Simulating physics with computers , 1999 .

[16]  Frank K. Wilhelm,et al.  Optimal Qubit Control Using Single-Flux Quantum Pulses , 2015, 1512.05495.

[17]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[18]  Erik Lucero,et al.  Reduced phase error through optimized control of a superconducting qubit , 2010, 1007.1690.

[19]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[20]  M. A. Rol,et al.  Independent, extensible control of same-frequency superconducting qubits by selective broadcasting , 2015, npj Quantum Information.

[21]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[22]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[23]  R. McDermott,et al.  Accurate Qubit Control with Single Flux Quantum Pulses , 2014, 1408.0390.

[24]  John M. Martinis,et al.  Accurate Control of Josephson Phase Qubits , 2003 .