Staggered grid leap-frog scheme for the (2+1) D Dirac equation

Abstract A numerical scheme utilizing a grid which is staggered in both space and time is proposed for the numerical solution of the ( 2 + 1 ) D Dirac equation in the presence of an external electromagnetic potential. It preserves the linear dispersion relation of the free Weyl equation for wave vectors aligned with the grid and facilitates the implementation of open (absorbing) boundary conditions via an imaginary potential term. This explicit scheme has second order accuracy in space and time. A functional for the norm is derived and shown to be conserved. Stability conditions are derived. Several numerical examples, ranging from generic to specific to textured topological insulator surfaces, demonstrate the properties of the scheme which can handle general electromagnetic potential landscapes.

[1]  L. Balents,et al.  Topological invariants of time-reversal-invariant band structures , 2007 .

[2]  Kenneth G. Wilson,et al.  A Remnant of Chiral Symmetry on the Lattice , 1982 .

[3]  C. Anderson The Positive Electron , 1933 .

[4]  Guido R. Mocken,et al.  FFT-split-operator code for solving the Dirac equation in 2+1 dimensions , 2008, Comput. Phys. Commun..

[5]  G. Semenoff,et al.  Condensed-Matter Simulation of a Three-Dimensional Anomaly , 1984 .

[6]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[7]  Werner Scheid,et al.  FINITE ELEMENT FORMULATION OF THE DIRAC EQUATION AND THE PROBLEM OF FERMION DOUBLING , 1998 .

[8]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .

[9]  F. Wilczek Quantum Field Theory , 1998, hep-th/9803075.

[10]  C. Beenakker,et al.  Finite difference method for transport properties of massless Dirac fermions , 2008, 0810.4787.

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  R. Feynman Space - time approach to quantum electrodynamics , 1949 .

[13]  L. Lamata,et al.  Relativistic quantum mechanics with trapped ions , 2011, 1106.6222.

[14]  Advanced Quantum Mechanics , 1969 .

[15]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[16]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[17]  Graf,et al.  Electromagnetic fields and dielectric response in empirical tight-binding theory. , 1995, Physical review. B, Condensed matter.

[18]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[19]  Walter Greiner,et al.  Relativistic Quantum Mechanics. Wave Equations , 1997 .

[20]  R. Stacey,et al.  Eliminating lattice fermion doubling , 1982 .

[21]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[22]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[23]  Rainer Grobe,et al.  Numerical approach to solve the time-dependent Dirac equation , 1999 .

[24]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[25]  W. Pötz Scattering theory for mesoscopic quantum systems with non‐trivial spatial asymptotics in one dimension , 1995 .

[26]  Physics Letters , 1962, Nature.

[27]  Walter Pötz,et al.  A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D , 2013, J. Comput. Phys..

[28]  P. Dirac The quantum theory of the electron , 1928 .

[29]  Belkacem,et al.  Numerical treatment of the time-dependent Dirac equation in momentum space for atomic processes in relativistic heavy-ion collisions. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  Physical Review , 1965, Nature.

[31]  R. Peierls,et al.  Zur Theorie des Diamagnetismus von Leitungselektronen , 1933 .

[32]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[33]  R. Schützhold,et al.  Optical lattice quantum simulator for quantum electrodynamics in strong external fields: spontaneous pair creation and the Sauter–Schwinger effect , 2011, 1109.2426.

[34]  André D. Bandrauk,et al.  Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling , 2011, Comput. Phys. Commun..

[35]  Guido R. Mocken,et al.  Quantum dynamics of relativistic electrons , 2004 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  P. Wallace The Band Theory of Graphite , 1947 .

[38]  R J Cava,et al.  Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. , 2009, Physical review letters.

[39]  Werner Scheid,et al.  Solution of the time-dependent Dirac equation by the finite difference method and application for Ca20++U91+ , 1983 .

[40]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[41]  C. Ertler,et al.  Dirac fermion wave guide networks on topological insulator surfaces , 2012, 1205.6941.

[42]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.