Numerical analysis of dislocations of the face slabs of the Zipingpu Concrete Faced Rockfill Dam during the Wenchuan earthquake

The Zipingpu Concrete Faced Rockfill Dam (CFRD) was obviously damaged during the Wenchuan earthquake in 2008. A wide range of dislocations occurred along the horizontal construction joints at EL. 845m, between the face slabs constructed in the second and third stages. The maximum displacement of the dislocations reached 17cm. In this study, the slab dislocations were investigated using finite element (FE) analysis. The method based on strain potential was applied to compute the permanent deformation of the Zipingpu Dam during the Wenchuan earthquake. The calculated magnitude of the slab dislocation showed good agreements with the field measurements. The dislocation mechanism was discussed. The results show that the dislocation of the concrete slab is a subsequent damage after the permanent deformation of the rockfill materials. The effects of the shear strength and the direction of the construction joints, the reservoir water level and the seismic waves were studied. The shear strength and the direction of the construction joints, reservoir water level and have a significant effect on the dislocation displacement. The dislocation can be effectively reduced by measures such as changing the direction of the construction joints or improving the shear strength at the horizontal joints.