Time-Indexed Formulations and the Total Weighted Tardiness Problem

Asolution approach based on the column-generation technique is presented for solving a time-indexed formulation of the total weighted tardiness problem. An acceleration strategy based on a decomposition of the time horizon into subperiods, where each subperiod is associated with a subproblem of the column-generation approach, is used to solve the linear relaxation. Branching strategies and dominance rules are also applied to find the optimal integer solution. Using this new approach, it is possible to solve to optimality 117 out of 125 open problems of the OR-Library.

[1]  Jean-Philippe Vial,et al.  Proximal ACCPM, a Cutting Plane Method for Column Generation and Lagrangian Relaxation: Application to the P-Median Problem , 2002 .

[2]  Laurent Péridy,et al.  A Branch and Bound Algorithm to Minimize Total Weighted Tardiness on a Single Processor , 2004, Ann. Oper. Res..

[3]  Martin W. P. Savelsbergh,et al.  The relation of time indexed formulations of single machine scheduling problems to the node packing problem , 2002, Math. Program..

[4]  Martin W. P. Savelsbergh,et al.  A polyhedral approach to single-machine scheduling problems , 1999, Math. Program..

[5]  Laurence A. Wolsey,et al.  An exact algorithm for IP column generation , 1994, Oper. Res. Lett..

[6]  Leyuan Shi,et al.  On the equivalence of the max-min transportation lower bound and the time-indexed lower bound for single-machine scheduling problems , 2007, Math. Program..

[7]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[8]  E. H. Bowman THE SCHEDULE-SEQUENCING PROBLEM* , 1959 .

[9]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[10]  Linus Schrage,et al.  Dynamic Programming Solution of Sequencing Problems with Precedence Constraints , 1978, Oper. Res..

[11]  Martin W. P. Savelsbergh,et al.  Time-Indexed Formulations for Machine Scheduling Problems: Column Generation , 2000, INFORMS J. Comput..

[12]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[13]  Chris N. Potts,et al.  A survey of algorithms for the single machine total weighted tardiness scheduling problem , 1990, Discret. Appl. Math..

[14]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[15]  Laurence A. Wolsey,et al.  A time indexed formulation of non-preemptive single machine scheduling problems , 1992, Math. Program..

[16]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[17]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[18]  B. J. Lageweg,et al.  Minimizing Total Costs in One-Machine Scheduling , 1975, Oper. Res..

[19]  Cynthia A. Phillips,et al.  Minimizing average completion time in the presence of release dates , 1998, Math. Program..

[20]  Chris N. Potts,et al.  A Branch and Bound Algorithm for the Total Weighted Tardiness Problem , 1985, Oper. Res..

[21]  Chris N. Potts,et al.  An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..

[22]  Stefan Irnich,et al.  The Shortest-Path Problem with Resource Constraints and k-Cycle Elimination for k 3 , 2006, INFORMS J. Comput..

[23]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[24]  Martin E. Dyer,et al.  Formulating the single machine sequencing problem with release dates as a mixed integer program , 1990, Discret. Appl. Math..

[25]  Michel X. Goemans,et al.  Improved approximation algorthims for scheduling with release dates , 1997, SODA '97.

[26]  David B. Shmoys,et al.  Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms , 1997, Math. Oper. Res..

[27]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[28]  Martin W. P. Savelsbergh,et al.  A Time-Indexed Formulation for Single-Machine Scheduling Problems: Branch-and-Cut , 1996 .

[29]  E. L. Lawler Efficient implementation of dynamic programming algorithms for sequencing problems : (preprint) , 1979 .

[30]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.