Chemical depletion in the Large Magellanic Cloud: RV Tauri stars and the photospheric feedback from their dusty discs. ?

Aims. By studying the photospheric abundances of 4 RV Tauri stars in the LMC, we test whether the depletion pattern of refractory elements, seen in similar Galactic sources, is also common for extragalactic sources. Since this depletion process probably only occurs through interaction with a stable disc, we investigate the circumstellar environment of these sources. Methods. A detailed photospheric abundance study was performed using high-resolution UVES optical spectra. To study the circumstellar environment we use photometric data to construct the spectral energy distributions of the stars, and determine the geometry of the circumstellar environment, whereas low-resolution Spitzer-IRS infrared spectra are used to trace its mineralogy. Results. Our results show that, also in the LMC, the photospheres of RV Tauri stars are commonly affected by the depletion process, although it can differ significantly in strength from source to source. From our detailed disc modelling and mineralogy study, we find that this process, as in the Galaxy, appears closely related to the presence of a stable Keplerian disc. The newly studied extragalactic objects have similar observational characteristics as Galactic post-AGB binaries surrounded by a dusty disc, and are therefore also believed to be part of a binary system. One source shows a very small infrared excess, atypical for a disc source, but still has evidence for depletion. We speculate this could point to the presence of a very evolved disc, similar to debris discs seen around young stellar objects.

[1]  G. Raskin,et al.  Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators , 2009, 0906.4482.

[2]  H. Winckel,et al.  SPITZER survey of dust grain processing in stable discs around binary post-AGB stars , 2008, 0809.2505.

[3]  Alexander G. G. M. Tielens,et al.  Interstellar Polycyclic Aromatic Hydrocarbon Molecules , 2008 .

[4]  A. Ginsburg,et al.  Kinematics and H{2} morphology of the multipolar post-AGB star IRAS 16594-4656 , 2008, 0801.0674.

[5]  H. Winckel,et al.  Dust-grain processing in circumbinary discs around evolved binaries. The RV Tauri spectral twins RU Centauri and AC Herculis , 2007, 0709.3197.

[6]  H. Winckel,et al.  Stellar population synthesis of post-AGB stars: the s-process in MACHO 47.2496.8 , 2007, 0707.2288.

[7]  D. Lambert,et al.  Infrared High-Resolution Spectroscopy of Post-AGB Circumstellar Disks. I. HR 4049: The Winnowing Flow Observed? , 2007, 0704.1237.

[8]  H. Winckel Post-Agb Binaries , 2007, astro-ph/0702245.

[9]  H. Winckel,et al.  First detection of photospheric depletion in the Large Magellanic Cloud , 2007, astro-ph/0701327.

[10]  H. Winckel,et al.  AGB nucleosynthesis in the Large Magellanic Cloud. Detailed abundance analysis of the RV Tauri sta , 2006, astro-ph/0610240.

[11]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[12]  H. Winckel,et al.  Keplerian discs around post-AGB stars: a common phenomenon? , 2006, astro-ph/0601578.

[13]  M. Min,et al.  Resolving the compact dusty discs around binary post-AGB stars using N-band interferometry , 2006, astro-ph/0601169.

[14]  J. Najita,et al.  Polycyclic Aromatic Hydrocarbons Orbiting HD 233517, an Evolved Oxygen-rich Red Giant , 2005, astro-ph/0512371.

[15]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[16]  D. A. García-Hernández,et al.  Revealing the Mid-Infrared Emission Structure of IRAS 16594–4656 and IRAS 07027–7934 , 2005, astro-ph/0512064.

[17]  G. Rieke,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[18]  Bangalore,et al.  Abundance Analyses of Field RV Tauri Stars. VI. An Extended Sample , 2005, astro-ph/0503344.

[19]  J. Hovenier,et al.  Modeling optical properties of cosmic dust grains using a distribution of hollow spheres , 2005, astro-ph/0503068.

[20]  Austin,et al.  Depletion in post-AGB stars with a dusty disc. II. , 2005, astro-ph/0501469.

[21]  F. Paresce,et al.  VINCI-VLTI measurements of HR 4049: the physical size of the circumbinary envelope ⋆ , 2004, astro-ph/0411136.

[22]  Yevgen Grynko,et al.  Light scattering by media composed of semitransparent particles of different shapes in ray optics approximation: consequences for spectroscopy, photometry, and polarimetry of planetary regoliths , 2005 .

[23]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[24]  J. R. Houck,et al.  The SMART Data Analysis Package for the Infrared Spectrograph on the Spitzer Space Telescope , 2004, astro-ph/0408295.

[25]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[26]  J. R. Houck,et al.  The Infrared Spectrograph (IRS) on the Spitzer Space Telescope , 2004, astro-ph/0406167.

[27]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[28]  H. Bond,et al.  Hubble Space Telescope Imaging of HD 44179, The Red Rectangle , 2004 .

[29]  A. Zijlstra,et al.  Polycyclic Aromatic Hydrocarbons and Crystalline Silicates in the Bipolar Post-Asymptotic Giant Branch Star IRAS 16279–4757 , 2004 .

[30]  C. Dominik,et al.  Flaring vs. self-shadowed disks: The SEDs of Herbig Ae/Be stars , 2004, astro-ph/0401495.

[31]  Hans Van Winckel,et al.  Post-AGB Stars , 2003 .

[32]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[33]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[34]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[35]  C. Curry,et al.  SFChem 2002: Chemistry as a Diagnostic of Star Formation , 2003 .

[36]  Jan Cami,et al.  The dust disk of HR 4049 - Another brick in the wall , 2002, astro-ph/0210145.

[37]  H. Winckel,et al.  The dust disk of HR4049 , 2002, astro-ph/0210145.

[38]  George Wallerstein,et al.  The Cepheids of Population II and Related Stars , 2002 .

[39]  G. Weigelt,et al.  Properties of the close binary and circumbinary torus of the Red Rectangle , 2002, astro-ph/0206189.

[40]  C. Bauschlicher,et al.  The rich 6 to 9 vec mu m spectrum of interstellar PAHs , 2002, astro-ph/0205400.

[41]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[42]  I. Yamamura,et al.  Low-temperature crystallization of silicate dust in circumstellar disks , 1999, Nature.

[43]  Brian Babler,et al.  HR 4049: temporal variations in the structure of the circumstellar material , 1999 .

[44]  A. Tomaney,et al.  The MACHO Project LMC Variable Star Inventory. VII. The Discovery of RV Tauri Stars and New Type II Cepheids in the Large Magellanic Cloud , 1997, astro-ph/9708039.

[45]  Alistair R. Walker,et al.  Cepheids as Distance Indicators , 1999 .

[46]  M. Jura RV Tauri stars as post-asymptotic giant branch objects , 1986 .

[47]  T. Ackerman,et al.  Algorithms for the calculation of scattering by stratified spheres. , 1981, Applied optics.