Ragged Synchronizability and Clustering in a Network of Coupled Oscillators

In this chapter we describe phenomenon of ragged synchronizability. First we give a theoretical introduction about detecting of the complete synchronization in the network of coupled systems. As an example we choose a network of non-diagonally coupled forced van der Pol oscillators.We present construction of the single electrical van der Pol oscillator and array of such systems. We show numerical and experimental results of the existence of the complete synchronization in the array and we discuss it in the very detailed way. We also consider the synchronization in clusters, experimentally in the small array and numerically in the larger network. Our numerical simulations show good agreement with the experimental observations.

[1]  T Kapitaniak,et al.  Experimental observation of ragged synchronizability. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Martin Hasler,et al.  Synchronization of bursting neurons: what matters in the network topology. , 2005, Physical review letters.

[3]  Deok-Sun Lee Synchronization transition in scale-free networks: clusters of synchrony. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  V N Belykh,et al.  Cluster synchronization modes in an ensemble of coupled chaotic oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Carsten Allefeld,et al.  Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Gade,et al.  Synchronous chaos in coupled map lattices with small-world interactions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  M Chavez,et al.  Synchronization in dynamical networks: evolution along commutative graphs. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Ying-Cheng Lai,et al.  ANTIPHASE SYNCHRONISM IN CHAOTIC SYSTEMS , 1998 .

[9]  G Korniss,et al.  Synchronization landscapes in small-world-connected computer networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  P Woafo,et al.  Synchronization in a ring of four mutually coupled van der Pol oscillators: theory and experiment. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Wolfgang Kinzel,et al.  Patterns of chaos synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Louis M. Pecora,et al.  Synchronization stability in Coupled oscillator Arrays: Solution for Arbitrary Configurations , 2000, Int. J. Bifurc. Chaos.

[13]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[14]  Tao Zhou,et al.  Phase synchronization on scale-free networks with community structure , 2007 .

[15]  Bruce J. West,et al.  Maximizing information exchange between complex networks , 2008 .

[16]  T. Kapitaniak,et al.  MONOTONE SYNCHRONIZATION OF CHAOS , 1996 .

[17]  T. Kapitaniak,et al.  Synchronization of chaos using continuous control. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[19]  Beom Jun Kim,et al.  Synchronization on small-world networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Fatihcan M Atay,et al.  Graph operations and synchronization of complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Johnson,et al.  Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Erik Mosekilde,et al.  Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators , 2001 .

[23]  Arkady Pikovsky,et al.  On the interaction of strange attractors , 1984 .

[24]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[25]  Przemyslaw Perlikowski,et al.  Ragged synchronizability of coupled oscillators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Francesc Comellas,et al.  Synchronous and asynchronous recursive random scale-free nets. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[28]  K. Kaneko Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements , 1990 .

[29]  E. Ott,et al.  Network synchronization of groups. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Serhiy Yanchuk,et al.  Discretization of frequencies in delay coupled oscillators. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  M. di Bernardo,et al.  Synchronization in weighted scale-free networks with degree-degree correlation , 2006 .

[33]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[34]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[35]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[36]  M. E. Shirokov,et al.  Chaotic synchronization in ensembles of coupled maps , 1997 .

[37]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[38]  Kestutis Pyragas,et al.  Coupling design for a long-term anticipating synchronization of chaos. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[40]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[41]  Xiaofan Wang,et al.  On synchronization in scale-free dynamical networks , 2005 .

[42]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach , 1983 .

[43]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[44]  Tomasz Kapitaniak,et al.  Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Z. Duan,et al.  Network synchronizability analysis: a graph-theoretic approach. , 2008, Chaos.

[46]  O. Rössler An equation for continuous chaos , 1976 .

[47]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[48]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[49]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[50]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[51]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[52]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[53]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .