Numerical simulation of liquid phase electroepitaxial growth of GaInAs under magnetic field

[1]  Sadik Dost,et al.  A numerical simulation model for liquid phase electroepitaxial growth of GaInAs , 1998 .

[2]  Z. Zytkiewicz Joule effect as a barrier for unrestricted growth of bulk crystals by liquid phase electroepitaxy , 1997 .

[3]  S. Dost,et al.  Convection model for growth and dissolution of ternary alloys by liquid phase epitaxy , 1996 .

[4]  Sadik Dost,et al.  A solid-liquid diffusion model for growth and dissolution of ternary alloys by liquid phase epitaxy , 1996 .

[5]  S. Dost,et al.  A model for liquid phase electroepitaxy under an external magnetic field I. Theory , 1995 .

[6]  B. Tabarrok,et al.  A model for liquid phase electroepitaxy under an external magnetic field II. Application , 1995 .

[7]  S. Dost,et al.  A continuum model for liquid phase electroepitaxy , 1995 .

[8]  N. Djilali,et al.  Role of thermosolutal convection in liquid phase electroepitaxial growth of gallium arsenide , 1995 .

[9]  N. Djilali,et al.  A two-dimensional diffusion model for liquid phase electroepitaxial growth of GaAs , 1994 .

[10]  Z. Zytkiewicz Influence of convection on the composition profiles of thick GaAlAs layers grown by liquid phase electroepitaxy , 1993 .

[11]  T. Bryśkiewicz,et al.  Growth of alloy substrates by liquid phase electroepitaxy; theoretical considerations , 1993 .

[12]  K. Benz,et al.  Growth of AlxGa1−xSb and GaSb bulk crystals with liquid phase electro-epitaxy (LPEE) , 1993 .

[13]  S. Miotkowska,et al.  Compositional control of thick Ga1 - xAl ϰ As layers (x≤0.72) grown by liquid phase electroepitaxy , 1992 .

[14]  C. Takenaka,et al.  Growth of ternary InxGa1−xAs bulk crystals with a uniform composition through supply of GaAs , 1991 .

[15]  K. Nakajima Calculation of composition variation of In1−vGavAs ternary crystals for diffusion and electromigration limited growth from a temperature graded solution with source material , 1991 .

[16]  Z. Wasilewski,et al.  Properties of very uniform InxGa1−xAs single crystals grown by liquid‐phase electroepitaxy , 1990 .

[17]  K. Nakajima Layer thickness calculation of In1−vGavAs grown by the source-current-controlled method — Diffusion and electromigration limited growth , 1989 .

[18]  M. Bugajski,et al.  Growth and characterization of high quality LPEE GaAs bulk crystals , 1987 .

[19]  K. Nakajima Liquid‐phase epitaxial growth of very thick In1−xGaxAs layers with uniform composition by source‐current‐controlled method , 1987 .

[20]  H. Gatos,et al.  Bulk GaAs crystal growth by liquid phase electroepitaxy , 1987 .

[21]  S. Dannefaer,et al.  Annealing of Grown-in Defects in Gaas , 1987 .

[22]  O. Ueda,et al.  Elimination of dislocations in bulk GaAs crystals grown by liquid‐phase electroepitaxy , 1987 .

[23]  L. Bicelli Liquid phase electroepitaxy , 1986 .

[24]  T. Bryśkiewicz Liquid phase electroepitaxy of semiconductor compounds , 1986 .

[25]  J. Daniele,et al.  Peltier‐induced liquid phase epitaxy and compositional control of mm‐thick layers of (Al,Ga)As , 1981 .

[26]  M. Small,et al.  Growth and dissolution of ternary alloys of III–V compounds by liquid phase epitaxy and the formation of heterostructures , 1981 .

[27]  M. Small,et al.  Growth and dissolution kinetics of III‐V heterostructures formed by LPE , 1979 .

[28]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[29]  P. Asbeck,et al.  cw GaAs/GaAlAs DH lasers grown by Peltier-induced LPE , 1977 .

[30]  M. Panish,et al.  Phase equilibria in ternary III–V systems , 1972 .