Using adjoint-based approach to study flapping wings

Adjoint-based methods show great potential in flow control and optimization of complex problems with highor infinite-dimensional control space. It is attractive to solve an adjoint problem to understand the complex effects from multiple control parameters to a few performance indicators of the flight of birds or insects. However, the traditional approach to formulate the adjoint problem becomes either impossible or too complex when arbitrary moving boundary (e.g. flapping wings) and its perturbation is considered. Here, we use non-cylindrical calculus to define the perturbation. So that, a simple adjoint system can be derived directly in the inertial coordinate. The approach is applied to optimize the vertical motion of an oscillatory cylinder to match a pre-defined downstream velocity profile. The result quickly converges to the analytical solution.

[1]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[2]  T. Colonius,et al.  A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions , 2008 .

[3]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..

[4]  Bartosz Protas,et al.  Adjoint-based optimization of PDEs in moving domains , 2008, J. Comput. Phys..

[5]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[6]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[7]  L. Heltai,et al.  On the hyper-elastic formulation of the immersed boundary method , 2008 .

[8]  Howard H. Hu,et al.  Direct simulation of fluid particle motions , 1992 .

[9]  Stefan Ulbrich,et al.  Numerical Solution of Optimal Control Problems Governed by the Compressible Navier-Stokes Equations , 2001 .

[10]  Roger Temam,et al.  DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.

[11]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[12]  Wei Shyy,et al.  Computational Fluid Dynamics with Moving Boundaries , 1995 .

[13]  J. Freund,et al.  A noise-controlled free shear flow , 2005, Journal of Fluid Mechanics.

[14]  Chun-ho Sung,et al.  Accurate aerodynamic sensitivity analysis using adjoint equations , 2000 .

[15]  Elias Balaras,et al.  An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries , 2006, J. Comput. Phys..

[16]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[17]  Haoxiang Luo,et al.  Effect of wing inertia on hovering performance of flexible flapping wings , 2010 .

[18]  B. Mohammadi,et al.  Design of Minimal Dispersion Fluidic Channels in a CAD-Free Framework , 2000 .

[19]  Tim Colonius,et al.  The immersed boundary method: A projection approach , 2007, J. Comput. Phys..

[20]  Mingjun Wei Jet Noise Control by Adjoint-Based Optimization , 2004 .

[21]  Z. Jane Wang,et al.  Systematic Derivation of Jump Conditions for the Immersed Interface Method in Three-Dimensional Flow Simulation , 2005, SIAM J. Sci. Comput..

[22]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[23]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[24]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[25]  Michael B. Giles,et al.  Improved- lift and drag estimates using adjoint Euler equations , 1999 .

[26]  Hong Zhao,et al.  Numerical Study of Flexible Flapping Wing Propulsion , 2010 .

[27]  Haibo Dong,et al.  The Wing Kinematics Effects on Performance and Wake Structure Produced by Finite-Span Hovering Wings , 2008 .

[28]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[29]  L. Fauci,et al.  A computational model of aquatic animal locomotion , 1988 .

[30]  M. Heinkenschloss,et al.  Optimal control of unsteady compressible viscous flows , 2002 .

[31]  Marian Nemec,et al.  Towards efficient aerodynamic shape optimization based on the Navier-Stokes equations , 2001 .

[32]  N. Zhang,et al.  An improved direct-forcing immersed-boundary method for finite difference applications , 2007, J. Comput. Phys..

[33]  Stefan Ulbrich,et al.  Towards adjoint-based methods for aeroacoustic control , 2001 .

[34]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[35]  Ping Zhang,et al.  Topology optimization of unsteady incompressible Navier-Stokes flows , 2011, J. Comput. Phys..

[36]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[37]  Clarence W. Rowley,et al.  Low-Dimensional Models for Control of Leading-Edge Vortices: Equilibria and Linearized Models , 2007 .

[38]  Antony Jameson Re-Engineering the Design Process Through Computation , 1999 .

[39]  R. Mittal,et al.  Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils , 2006, Journal of Fluid Mechanics.

[40]  Michael J. Aftosmis,et al.  Adjoint sensitivity computations for an embedded-boundary Cartesian mesh method , 2008, J. Comput. Phys..

[41]  Timothy J. Barth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .

[42]  Rajat Mittal,et al.  A sharp interface immersed boundary method for compressible viscous flows , 2007, J. Comput. Phys..

[43]  Hao Liu,et al.  Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices , 2007 .

[44]  A. Jameson,et al.  A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION , 2000 .

[45]  Christopher K. W. Tam,et al.  Mean flow refraction effects on sound radiated from localized sources in a jet , 1998, Journal of Fluid Mechanics.

[46]  J. Freund,et al.  Noise control using adjoint-based optimization , 2002 .