Locally ideal formulations for piecewise linear functions with indicator variables

In this paper, we consider mixed integer linear programming (MIP) formulations for piecewise linear functions (PLFs) that are evaluated when an indicator variable is turned on. We describe modifications to standard MIP formulations for PLFs with desirable theoretical properties and superior computational performance in this context.

[1]  G. Dantzig ON THE SIGNIFICANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS WITH SOME INTEGER VARIABLES , 1960 .

[2]  Björn Geißler,et al.  Using Piecewise Linear Functions for Solving MINLP s , 2012 .

[3]  Manfred W. Padberg,et al.  Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs , 1998, Oper. Res. Lett..

[4]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2008, Math. Program..

[5]  Stephen C. Graves,et al.  A composite algorithm for a concave-cost network flow problem , 1989, Networks.

[6]  Hanif D. Sherali,et al.  Disjunctive Programming , 2009, Encyclopedia of Optimization.

[7]  Juan Pablo Vielma,et al.  Mixed Integer Linear Programming Formulation Techniques , 2015, SIAM Rev..

[8]  Oktay Günlük,et al.  Perspective Reformulation and Applications , 2012 .

[9]  Leonard M. Lodish,et al.  CALLPLAN: An Interactive Salesman’s Call Planning System , 1971 .

[10]  A. Borghetti,et al.  An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reservoir , 2008, IEEE Transactions on Power Systems.

[11]  M. Carrion,et al.  A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem , 2006, IEEE Transactions on Power Systems.

[12]  Antonio J. Conejo,et al.  Transmission expansion planning: a mixed-integer LP approach , 2003 .

[13]  Oktay Günlük,et al.  Perspective reformulations of mixed integer nonlinear programs with indicator variables , 2010, Math. Program..

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2011, Math. Program..

[16]  Oktay Günlük,et al.  Perspective Relaxation of Mixed Integer Nonlinear Programs with Indicator Variables , 2008, IPCO.

[17]  Thomas L. Magnanti,et al.  A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..

[18]  Prabhakant Sinha,et al.  Integer Programming Models for Sales Resource Allocation , 1980 .

[19]  Manfred Padberg,et al.  Location, Scheduling, Design and Integer Programming , 2011, J. Oper. Res. Soc..

[20]  Gerhard J. Woeginger,et al.  Operations Research Letters , 2011 .

[21]  Alexander Martin,et al.  Mixed Integer Models for the Stationary Case of Gas Network Optimization , 2006, Math. Program..

[22]  R. Meyer Integer and mixed-integer programming models: General properties , 1975 .

[23]  Sven Leyffer,et al.  Mixed Integer Nonlinear Programming , 2011 .

[24]  J. K. Lowe Modelling with Integer Variables. , 1984 .

[25]  A. S. Manne,et al.  On the Solution of Discrete Programming Problems , 1956 .

[26]  Jon Lee,et al.  Polyhedral methods for piecewise-linear functions I: the lambda method , 2001, Discret. Appl. Math..

[27]  George L. Nemhauser,et al.  Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions , 2010, Oper. Res..

[28]  George L. Nemhauser,et al.  Models for representing piecewise linear cost functions , 2004, Oper. Res. Lett..

[29]  Ignacio E. Grossmann,et al.  An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure , 2012 .