Fabrication and heating rate study of microscopic surface electrode ion traps

We report heating rate measurements in a microfabricated gold- on-sapphire surface electrode ion trap with a trapping height of approximately 240µm. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation, the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion-loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and the possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed onto metal surfaces and amorphous dielectrics.

[1]  L. Deslauriers Zero-point cooling and low heating of trapped ^1^1^1Cd^+ ions (5 pages) , 2004 .

[2]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[3]  J. Britton,et al.  A microfabricated surface-electrode ion trap in silicon , 2006 .

[4]  Yuriy Makhlin,et al.  Low- and high-frequency noise from coherent two-level systems. , 2005, Physical review letters.

[5]  H J Mamin,et al.  Detection and manipulation of statistical polarization in small spin ensembles. , 2003, Physical review letters.

[6]  F. Schmidt-Kaler,et al.  Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999 .

[7]  Persson,et al.  Comment on "Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields" , 2000, Physical review letters.

[8]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[9]  T. Eiles,et al.  Noise in the Coulomb blockade electrometer , 1992 .

[10]  P Zoller,et al.  Interfacing quantum-optical and solid-state qubits. , 2004, Physical review letters.

[11]  P. C. Haljan,et al.  04 04 14 2 v 1 2 5 A pr 2 00 4 Zero-Point cooling and low heating of trapped 111 Cd + ions , 2004 .

[12]  W A Phillips Two-level states in glasses , 1987 .

[13]  Jonas Zmuidzinas,et al.  Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators , 2008 .

[14]  B. Gotsmann,et al.  Brownian Motion of Microscopic Solids under the Action of Fluctuating Electromagnetic Fields , 1999 .

[15]  Boris B. Blinov,et al.  Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions , 2004, quant-ph/0404142.

[16]  J. Banavar,et al.  Thermally created tunnelling states in glasses , 1982 .

[17]  R. Blatt,et al.  The “Trapped State” of a Trapped Ion—Line Shifts and Shape , 1992 .

[18]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[19]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[20]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[21]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[22]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[23]  R. B. Blakestad,et al.  Fluorescence during Doppler cooling of a single trapped atom , 2007, 0707.1314.

[24]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[25]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[26]  D. Engelke,et al.  Spectroscopy of the electric-quadrupole transition 2 S 1/2 (F=0)- 2 D 3/2 (F=2) in trapped 171 Yb + , 2000 .

[27]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[28]  Jonas Zmuidzinas,et al.  Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.

[29]  Christian Kurtsiefer,et al.  Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap , 2002 .

[30]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[31]  P. M. Horn,et al.  Low-frequency fluctuations in solids: 1/f noise , 1981 .

[32]  Jaroslaw Labaziewicz,et al.  Temperature dependence of electric field noise above gold surfaces. , 2008, Physical review letters.

[33]  M. Wilkens,et al.  Loss and heating of particles in small and noisy traps , 1999, quant-ph/9906128.

[34]  D A Williams,et al.  Charge-qubit operation of an isolated double quantum dot. , 2005, Physical review letters.

[35]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[36]  E. Knill,et al.  Simplified motional heating rate measurements of trapped ions , 2007, 0707.1528.

[37]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[38]  J. Marohn,et al.  Dielectric fluctuations and the origins of noncontact friction. , 2006, Physical review letters.

[39]  P. Feibelman Surface electromagnetic fields , 1982 .

[40]  A. Volokitin,et al.  Adsorbate-induced enhancement of electrostatic noncontact friction. , 2005, Physical review letters.

[41]  C. Speake,et al.  Forces between conducting surfaces due to spatial variations of surface potential. , 2003, Physical review letters.

[42]  A. Steane,et al.  A long-lived memory qubit on a low-decoherence quantum bus , 2007, 0710.4421.

[43]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[44]  Frank Steglich,et al.  Reply [Comment on "Bose-Einstein condensation of magnons in Cs2CuCl4" - Reply] , 2006 .

[45]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[46]  F. Schmidt-Kaler,et al.  Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap , 2007, 0712.3249.

[47]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[48]  A. Sommerfeld Partial Differential Equations in Physics , 1949 .

[49]  S. Olmschenk,et al.  Ion trap in a semiconductor chip , 2006 .

[50]  T Yamamoto,et al.  Quantum noise in the josephson charge qubit. , 2004, Physical review letters.

[51]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[52]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[53]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[54]  E. Hinds,et al.  Spin coupling between cold atoms and the thermal fluctuations of a metal surface. , 2003, Physical review letters.

[55]  T. Kippenberg,et al.  Cryogenic properties of optomechanical silica microcavities , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[56]  H. Haffner,et al.  Wiring up trapped ions to study aspects of quantum information , 2009, 0903.3834.

[57]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[58]  M. Lindberg,et al.  Temperature of a laser-cooled trapped three-level ion , 1986 .

[59]  K. R. Brown,et al.  Experimental investigation of planar ion traps , 2005, quant-ph/0511018.

[60]  T. Coudreau,et al.  Electric field noise above surfaces: A model for heating rate scaling law in ion traps , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.