Constraints

This article introduces the large portfolio selection using gross-exposure constraints. It shows that with gross-exposure constraints, the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results by Jagannathan and Ma. It also shows that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama–French industrial portfolios and the 600 stocks randomly selected from Russell 3000.

[1]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[2]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[3]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[4]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[5]  F. Black Capital Market Equilibrium with Restricted Borrowing , 1972 .

[6]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[7]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[8]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .

[9]  F. D. Roon,et al.  Testing for Mean-Variance Spanning with Short Sales Constraints and Transaction Costs: The Case of Emerging Markets , 2001 .

[10]  Shane A. Corwin Differences in Trading Behavior Across NYSE Specialist Firms , 1997 .

[11]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[12]  M. Talagrand,et al.  Lectures on Probability Theory and Statistics , 2000 .

[13]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[14]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[15]  R. Engle Dynamic Conditional Correlation , 2002 .

[16]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[17]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[18]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[19]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[20]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[21]  Y. Ritov,et al.  Persistence in high-dimensional linear predictor selection and the virtue of overparametrization , 2004 .

[22]  J. Picard,et al.  Lectures on probability theory and statistics , 2004 .

[23]  Z. Q. John Lu,et al.  Nonlinear Time Series: Nonparametric and Parametric Methods , 2004, Technometrics.

[24]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[25]  Jianqing Fan,et al.  Large Dimensional Covariance Matrix Estimation Via a Factor Model , 2006 .

[26]  Michael H. Neumann,et al.  Probability and moment inequalities for sums of weakly dependent random variables, with applications , 2007 .

[27]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[28]  Robert F. Engle,et al.  Fitting and Testing Vast Dimensional Time-Varying Covariance Models , 2007 .

[29]  Jianqing Fan Variable Screening in High-dimensional Feature Space , 2007 .

[30]  N. Shephard,et al.  Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading , 2010 .

[31]  M. Pesaran,et al.  Optimal Asset Allocation with Factor Models for Large Portfolios , 2008, SSRN Electronic Journal.

[32]  Michael H. Neumann,et al.  Goodness-of-fit tests for Markovian time series models: Central limit theory and bootstrap approximations , 2008, 0803.0835.

[33]  Jianqing Fan,et al.  Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios , 2008, 0812.2604.

[34]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[35]  I. Daubechies,et al.  Sparse and stable Markowitz portfolios , 2007, Proceedings of the National Academy of Sciences.

[36]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[37]  Lutz Dümbgen,et al.  Nemirovski's Inequalities Revisited , 2008, Am. Math. Mon..

[38]  S. Geer,et al.  Nemirovskis Inequalities Revisited , 2010 .

[39]  R. Engle,et al.  Dynamic Equicorrelation , 2011 .

[40]  Morina. Kurniawan,et al.  Common risk factors in the returns on stocks : empirical evidence from Singapore. , 2011 .

[41]  Pascal Vallet,et al.  Improved estimation of the logarithm of the covariance matrix , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[42]  Han Xiao,et al.  Asymptotic theory for maximum deviations of sample covariance matrix estimates , 2013 .

[43]  Tso-Jung Yen,et al.  Solving Norm Constrained Portfolio Optimization via Coordinate-Wise Descent Algorithms , 2010, Comput. Stat. Data Anal..