New Developments in Quantum Algorithms

In this talk, we describe two recent developments in quantum algorithms. The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time O(√N). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model. The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N2.37...) where N is the size of the system, the quantum algorithm runs in time O(logc N). It outputs a quantum state describing the solution of the system.

[1]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[2]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[3]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER , 2010 .

[4]  Frédéric Magniez,et al.  Quantum algorithms for the triangle problem , 2005, SODA '05.

[5]  Gilles Brassard,et al.  Quantum cryptanalysis of hash and claw-free functions , 1997, SIGA.

[6]  Jérémie Roland,et al.  Anderson localization casts clouds over adiabatic quantum optimization , 2009, ArXiv.

[7]  Michael E. Saks,et al.  Quantum query complexity and semi-definite programming , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[8]  Avatar Tulsi,et al.  Faster quantum-walk algorithm for the two-dimensional spatial search , 2008, 0801.0497.

[9]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[10]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[13]  Ben Reichardt Faster quantum algorithm for evaluating game trees , 2011, SODA '11.

[14]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[15]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[16]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[17]  Ben Reichardt,et al.  Span Programs and Quantum Query Complexity: The General Adversary Bound Is Nearly Tight for Every Boolean Function , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[18]  Michael E. Saks,et al.  Probabilistic Boolean decision trees and the complexity of evaluating game trees , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[19]  Andris Ambainis A nearly optimal discrete query quantum algorithm for evaluating NAND formulas , 2007 .

[20]  Andris Ambainis,et al.  Polynomial degree vs. quantum query complexity , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[21]  Ben Reichardt,et al.  Span-program-based quantum algorithm for evaluating formulas , 2007, Theory Comput..

[22]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[23]  Ben Reichardt,et al.  Reflections for quantum query algorithms , 2010, SODA '11.

[24]  Salvador Elías Venegas-Andraca,et al.  Quantum Walks for Computer Scientists , 2008, Quantum Walks for Computer Scientists.

[25]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[26]  Michael E. Saks,et al.  A lower bound on the quantum query complexity of read-once functions , 2001, Electron. Colloquium Comput. Complex..

[27]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[28]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[29]  Andris Ambainis Quantum Random Walks - New Method for Designing Quantum Algorithms , 2008, SOFSEM.

[30]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[31]  Ben Reichardt Span-Program-Based Quantum Algorithm for Evaluating Unbalanced Formulas , 2011, TQC.

[32]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[33]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[34]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[35]  Troy Lee,et al.  Negative weights make adversaries stronger , 2007, STOC '07.

[36]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[37]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[38]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[39]  Andris Ambainis,et al.  Coins make quantum walks faster , 2004, SODA '05.

[40]  Michele Mosca,et al.  The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer , 1998, QCQC.

[41]  Shengyu Zhang,et al.  Every NAND formula on N variables can be evaluated in time O(N^{1/2+eps}) , 2007 .

[42]  Andris Ambainis,et al.  Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer , 2010, SIAM J. Comput..

[43]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[44]  Felix Wu,et al.  The quantum query complexity of approximating the median and related statistics , 1998, STOC '99.

[45]  Andris Ambainis Quantum algorithms for formula evaluation , 2010, Quantum Cryptography and Computing.

[46]  Andris Ambainis,et al.  Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations , 2010, ArXiv.

[47]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[48]  Andrew M. Childs,et al.  The quantum query complexity of implementing black-box unitary transformations , 2009 .

[49]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[50]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[51]  Frédéric Magniez,et al.  Lower bounds for randomized and quantum query complexity using Kolmogorov arguments , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[52]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[53]  Andris Ambainis,et al.  Quantum search algorithms , 2004, SIGA.

[54]  Marc Snir,et al.  Lower Bounds on Probabilistic Linear Decision Trees , 1985, Theor. Comput. Sci..

[55]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[56]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[57]  Harry Buhrman,et al.  Quantum verification of matrix products , 2004, SODA '06.

[58]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.