Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test.

[1]  A. Bidziński,et al.  Evidence for existence of two opposite noradrenergic brain systems controlling behavior , 1978, Psychopharmacology.

[2]  K. Fuxe,et al.  Evidence for the existence of monoamine neurons in the central nervous system , 1965, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[3]  A. Meli,et al.  Is the forced swimming test a suitable model for revealing antidepressant activity? , 2004, Psychopharmacology.

[4]  W. Danysz,et al.  A stimulatory effect of intraaccumbens injections of noradrenaline on the behavior of rats in the forced swim test , 2004, Psychopharmacology.

[5]  J. Wood,et al.  Functional supersensitivity to adrenergic agonists in the rat after DSP-4, a selective noradrenergic neurotoxin , 2004, Psychopharmacology.

[6]  H. Thoenen,et al.  Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine , 2004, Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie.

[7]  I. Lucki,et al.  Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. , 2001, The Journal of pharmacology and experimental therapeutics.

[8]  I. Lucki,et al.  Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2C) receptors. , 2000, The Journal of pharmacology and experimental therapeutics.

[9]  Susan G. Amara,et al.  Reboxetine: a pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor , 2000, Biological Psychiatry.

[10]  G. Aston-Jones,et al.  Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion , 2000, Nature.

[11]  Y. Shaham,et al.  Clonidine blocks stress‐induced reinstatement of heroin seeking in rats: an effect independent of locus coeruleus noradrenergic neurons , 2000, The European journal of neuroscience.

[12]  J. Kelly,et al.  Reboxetine attenuates forced swim test-induced behavioural and neurochemical alterations in the rat , 1999, European Neuropsychopharmacology.

[13]  G. Aston-Jones,et al.  The Bed Nucleus of the Stria Terminalis: A Target Site for Noradrenergic Actions in Opiate Withdrawal , 1999, Annals of the New York Academy of Sciences.

[14]  E. F. Espejo,et al.  Prefrontocortical dopamine depletion induces antidepressant-like effects in rats and alters the profile of desipramine during Porsolt's test , 1999, Neuroscience.

[15]  J. Kelly,et al.  Activity and onset of action of reboxetine and effect of combination with sertraline in an animal model of depression. , 1999, European journal of pharmacology.

[16]  S. Stanford,et al.  A partial noradrenergic lesion induced by DSP-4 increases extracellular noradrenaline concentration in rat frontal cortex: a microdialysis study in vivo , 1998, Psychopharmacology.

[17]  I. Lucki,et al.  Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test , 1998, Psychopharmacology.

[18]  G. Racagni,et al.  Rationale for the development of noradrenaline reuptake inhibitors , 1998 .

[19]  Trevor R. Norman,et al.  Antidepressant efficacy and tolerability of the selective norepinephrine reuptake inhibitor reboxetine: a review. , 1998, The Journal of clinical psychiatry.

[20]  J. Biederman,et al.  Attention-deficit/hyperactivity disorder: a life-span perspective. , 1998, The Journal of clinical psychiatry.

[21]  M. Page,et al.  Activation of the locus ceruleus brain noradrenergic system during stress: circuitry, consequences, and regulation. , 1998, Advances in pharmacology.

[22]  I. Lucki The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. , 1997, Behavioural pharmacology.

[23]  I. Lucki,et al.  Potential antidepressant effects of novel tropane compounds, selective for serotonin or dopamine transporters. , 1997, The Journal of pharmacology and experimental therapeutics.

[24]  S. Stahl Psychopharmacology of Antidepressants , 1997 .

[25]  M. Detke,et al.  Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. , 1997, Experimental and clinical psychopharmacology.

[26]  J. Harro,et al.  Overflow of noradrenaline and dopamine in frontal cortex after [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine] (DSP-4) treatment: in vivo microdialysis study in anaesthetized rats , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[27]  B. Leonard,et al.  The role of noradrenaline in depression: a review. , 1997, Journal of psychopharmacology.

[28]  O. Gandolfi,et al.  Modulatory role of dopamine on excitatory amino acid receptors , 1996, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[29]  M. Detke,et al.  Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth , 1995, Behavioural Brain Research.

[30]  J. O'Donnell,et al.  Facilitation of norepinephrine release from cerebral cortex is mediated by beta 2-adrenergic receptors. , 1995, Life sciences.

[31]  S. Stanford,et al.  Central noradrenergic neurones and stress. , 1995, Pharmacology & therapeutics.

[32]  K. Marshall,et al.  Electrophysiological changes accompanying DSP-4 lesions of rat locus coeruleus neurons , 1993, Brain Research.

[33]  D. Heal,et al.  Quantification of presynaptic α2-adrenoceptors in rat brain after short-term DSP-4 lesioning , 1993 .

[34]  D. Heal,et al.  Quantification of presynaptic alpha 2-adrenoceptors in rat brain after short-term DSP-4 lesioning. , 1993, European journal of pharmacology.

[35]  J. Fritschy,et al.  Selective effects of DSP-4 on locus coeruleus axons: are there pharmacologically different types of noradrenergic axons in the central nervous system? , 1991, Progress in brain research.

[36]  R. Valentino,et al.  Antidepressant actions on brain noradrenergic neurons. , 1990, The Journal of pharmacology and experimental therapeutics.

[37]  James N. Davis,et al.  DSP-4 treatment produces abnormal tyrosine hydroxylase immunoreactive fibers in rat hippocampus , 1988, Experimental Neurology.

[38]  E. Esposito,et al.  Further evidence that noradrenaline is not involved in the anti-immobility activity of chronic desipramine in the rat. , 1987, European journal of pharmacology.

[39]  T. Robbins,et al.  Dissociable effects of lesions to the dorsal or ventral noradrenergic bundle on the acquisition, performance, and extinction of aversive conditioning. , 1987, Behavioral neuroscience.

[40]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[41]  N. Osborne Handbook of chemical neuroanatomy, Vol. 2: Classical Transmitters in the CNS Part 1. Edited by A. Björklund and T. Hökfelt. ISBN 0444 90330 5. Price: $104. Elsevier, 1984 , 1986, Neurochemistry International.

[42]  W. Danysz,et al.  Comparative studies on antidepressant action of alprazolam in different animal models. , 1986, Polish journal of pharmacology and pharmacy.

[43]  W. Danysz,et al.  On the role of noradrenergic neurotransmission in the action of desipramine and amitriptyline in animal models of depression. , 1986, Polish journal of pharmacology and pharmacy.

[44]  W. Kostowski,et al.  Modification of behavioral response to intra-hippocampal injections of noradrenaline and adrenoceptor agonists by chronic treatment with desipramine and citalopram: functional aspects of adaptive receptor changes. , 1985, European journal of pharmacology.

[45]  W. Danysz,et al.  Studies on the locus coeruleus system in an animal model for antidepressive activity. , 1984, Polish journal of pharmacology and pharmacy.

[46]  W. Danysz,et al.  Studies on brain noradrenergic neurons in animal model for antidepressive activity. , 1984, Psychopharmacology bulletin.

[47]  P. Waldmeier,et al.  Alteration of central alpha2- and beta-adrenergic receptors in the rat after DSP-4, a selective noradrenergic neurotoxin , 1983, Neuroscience.

[48]  O. Puciłowski,et al.  Effect of lesions of the brain noradrenergic systems on amphetamine-induced hyperthermia and locomotor stimulation. , 1982, Acta physiologica Polonica.

[49]  G. Jonsson,et al.  DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)--a useful denervation tool for central and peripheral noradrenaline neurons. , 1981, European journal of pharmacology.

[50]  A. Bidziński,et al.  Effects of lesions of the ventral noradrenergic bundle on aggressive behavior in rats , 1980, Physiology & Behavior.

[51]  R. Porsolt,et al.  Depression: a new animal model sensitive to antidepressant treatments , 1977, Nature.

[52]  G. Edwards Textbook of psychopharmacology , 1975, Nature.

[53]  J. Schildkraut,et al.  The catecholamine hypothesis of affective disorders. A review of supporting evidence. , 1967, International journal of psychiatry.

[54]  G GOERANSSON,et al.  THE METABOLISM OF FATTY ACIDS IN THE RAT. VI. ARACHIDONIC ACID. , 1965, Acta physiologica Scandinavica.

[55]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.