Accelerated Methods for the SOCP-Relaxed Component-Based Distributed Optimal Power Flow

In light of the increased focus on distributed methods, this paper proposes two accelerated subgradient methods and an adaptive penalty parameter scheme to speed-up the convergence of ADMM on the component-based dual decomposition of the second-order cone programming (SOCP) relaxation of the OPF. This work is the first to apply an adaptive penalty parameter method along with an accelerated subgradient method together in one scheme for distributed OPF. This accelerated scheme is demonstrated to reach substantial speed-ups, as high as 87%, on real-world test systems with more than 9000 buses, as well as on other difficult test cases.

[1]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[2]  Daniel Bienstock,et al.  Strong NP-hardness of AC power flows feasibility , 2019, Oper. Res. Lett..

[3]  Jonathan Currie,et al.  Opti: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User , 2012 .

[4]  Vladimir Pavlovic,et al.  Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty , 2015, AAAI.

[5]  Santanu S. Dey,et al.  Strong SOCP Relaxations for the Optimal Power Flow Problem , 2015, Oper. Res..

[6]  Pascal Van Hentenryck,et al.  Strengthening Convex Relaxations with Bound Tightening for Power Network Optimization , 2015, CP.

[7]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[8]  Xiaoming Yuan,et al.  On the O(1/t) Convergence Rate of Alternating Direction Method with Logarithmic-Quadratic Proximal Regularization , 2012, SIAM J. Optim..

[9]  Ufuk Topcu,et al.  Exact Convex Relaxation of Optimal Power Flow in Radial Networks , 2013, IEEE Transactions on Automatic Control.

[10]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[11]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[12]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[13]  Jean Maeght,et al.  AC Power Flow Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE , 2016, 1603.01533.

[14]  Euhanna Ghadimi,et al.  Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems , 2013, IEEE Transactions on Automatic Control.

[15]  Jonathan Eckstein Parallel alternating direction multiplier decomposition of convex programs , 1994 .

[16]  Pascal Van Hentenryck,et al.  AC-Feasibility on Tree Networks is NP-Hard , 2014, IEEE Transactions on Power Systems.

[17]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[18]  Stephen P. Boyd,et al.  Dynamic Network Energy Management via Proximal Message Passing , 2013, Found. Trends Optim..

[19]  S. Oren,et al.  Bound Tightening for the Alternating Current Optimal Power Flow Problem , 2016, IEEE Transactions on Power Systems.

[20]  Steven H. Low,et al.  Branch Flow Model: Relaxations and Convexification—Part I , 2012, IEEE Transactions on Power Systems.

[21]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[22]  S. Wang,et al.  Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems , 2001 .

[23]  WenChuan Wu,et al.  Recover Feasible Solutions for SOCP Relaxation of Optimal Power Flow Problems in Mesh Networks , 2017, IET Generation, Transmission & Distribution.

[24]  Michael I. Jordan,et al.  A General Analysis of the Convergence of ADMM , 2015, ICML.

[25]  Steven H. Low,et al.  Distributed algorithm for optimal power flow on a radial network , 2014, 53rd IEEE Conference on Decision and Control.

[26]  Steven H. Low,et al.  Branch Flow Model: Relaxations and Convexification—Part II , 2012 .

[27]  B. He,et al.  Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .

[28]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[29]  Konstantina Christakopoulou,et al.  Accelerated Alternating Direction Method of Multipliers , 2015, KDD.

[30]  Henrik Sandberg,et al.  A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems , 2017, IEEE Transactions on Smart Grid.

[31]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[32]  Gregor Verbic,et al.  A Component-Based Dual Decomposition Method for the OPF Problem , 2017, ArXiv.

[33]  Carleton Coffrin,et al.  NESTA, The NICTA Energy System Test Case Archive , 2014, ArXiv.