Incomplete Cholesky Factorizations with Limited Memory

We propose an incomplete Cholesky factorization for the solution of large-scale trust region subproblems and positive definite systems of linear equations. This factorization depends on a parameter p that specifies the amount of additional memory (in multiples of n, the dimension of the problem) that is available; there is no need to specify a drop tolerance. Our numerical results show that the number of conjugate gradient iterations and the computing time are reduced dramatically for small values of p. We also show that in contrast with drop tolerance strategies, the new approach is more stable in terms of number of iterations and memory requirements.

[1]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[2]  I. Gustafsson A class of first order factorization methods , 1978 .

[3]  N. Munksgaard,et al.  Solving Sparse Symmetric Sets of Linear Equations by Preconditioned Conjugate Gradients , 1980, TOMS.

[4]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[5]  Philip E. Gill,et al.  Practical optimization , 1981 .

[6]  J. Meijerink,et al.  Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems , 1981 .

[7]  Iain S. Duff,et al.  Sparse matrix test problems , 1982 .

[8]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[9]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[10]  M. A. Ajiz,et al.  A robust incomplete Choleski‐conjugate gradient algorithm , 1984 .

[11]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[12]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .

[13]  D. P. Young,et al.  Application of sparse matrix solvers as effective preconditioners , 1989 .

[14]  Mark K. Segar A SLAP for the masses , 1989 .

[15]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[16]  V. Eijkhout Analysis of parallel incomplete point factorizations , 1991 .

[17]  Ivar Gustafasson A class of precondition conjugate gradient methods applied to finite element equations , 1991 .

[18]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[19]  E. D'Azevedo,et al.  Towards a cost-effective ILU preconditioner with high level fill , 1992 .

[20]  Michael A. Saunders,et al.  Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..

[21]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[22]  Tamar Schlick,et al.  Modified Cholesky Factorizations for Sparse Preconditioners , 1993, SIAM J. Sci. Comput..

[23]  P. Forsyth,et al.  Preconditioned conjugate gradient methods for three-dimensional linear elasticity , 1994 .

[24]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[25]  David E. Stewart,et al.  Meschach : matrix computations in C , 1994 .

[26]  O. Axelsson Iterative solution methods , 1995 .

[27]  Mark T. Jones,et al.  An improved incomplete Cholesky factorization , 1995, TOMS.

[28]  Anders Forsgren,et al.  Computing Modified Newton Directions Using a Partial Cholesky Factorization , 1995, SIAM J. Sci. Comput..

[29]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[30]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[31]  Danny C. Sorensen,et al.  Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..

[32]  I. Hlad ROBUST PRECONDITIONERS FOR LINEAR ELASTICITY FEM ANALYSES , 1997 .

[33]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[34]  A. Neumaier On satisfying second-order optimality conditions using modified Cholesky factorizations , 1997 .

[35]  M. B. Reed,et al.  ROBUST PRECONDITIONERS FOR LINEAR ELASTICITY FEM ANALYSES , 1997 .

[36]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[37]  S. H. Cheng,et al.  A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..

[38]  Danny C. Sorensen,et al.  A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..