Inhibition of microbial growth by cold atmospheric plasma compared with the antiseptics chlorhexidine digluconate, octenidine dihydrochloride, and polyhexanide

[1]  P. Brun,et al.  Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization , 2018, Journal of applied microbiology.

[2]  J. Impe,et al.  Antimicrobial efficacy of cold atmospheric plasma for different intrinsic and extrinsic parameters , 2018 .

[3]  J. Sutton,et al.  Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms. , 2017, International journal of antimicrobial agents.

[4]  M. Jünger,et al.  Does antibiotic resistance impair plasma susceptibility of multi-drug resistant clinical isolates of enterococci in vitro? , 2016, Gut Pathogens.

[5]  Sean P. Gorman,et al.  Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence , 2016, Scientific Reports.

[6]  Juliana Aparecida Delben,et al.  Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium , 2016, PloS one.

[7]  A. Kramer,et al.  Antibacterial Activity of Cold Atmospheric Pressure Argon Plasma against 78 Genetically Different (mecA, luk-P, agr or Capsular Polysaccharide Type) Staphylococcus aureus Strains , 2016, Skin Pharmacology and Physiology.

[8]  A. Kramer,et al.  Cold Physical Plasmas in the Field of Hygiene—Relevance, Significance, and Future Applications , 2015 .

[9]  Paula Bourke,et al.  Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors , 2015, PloS one.

[10]  P. Duez,et al.  The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms , 2015, BioMed research international.

[11]  K. Marycz,et al.  Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota , 2014, Annals of Microbiology.

[12]  K. Weltmann,et al.  Redox‐Based Assay for Assessment of Biological Impact of Plasma Treatment , 2014 .

[13]  M. Jünger,et al.  In Vitro Susceptibility of Multidrug Resistant Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD): In Vitro Susceptibility of Multidrug Resistant Skin and Wound Pathogens… , 2014 .

[14]  W. Krzyściak,et al.  The virulence of Streptococcus mutans and the ability to form biofilms , 2013, European Journal of Clinical Microbiology & Infectious Diseases.

[15]  J. Bernhardt,et al.  Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma , 2013, Proteomics.

[16]  A. Sckell,et al.  Suitability of tissue tolerable plasmas (TTP) for the management of chronic wounds , 2013 .

[17]  D. Andersson,et al.  Selection of resistance at lethal and non-lethal antibiotic concentrations. , 2012, Current opinion in microbiology.

[18]  T. von Woedtke,et al.  Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. , 2012, The Journal of hospital infection.

[19]  A. Arnold,et al.  In Vitro Susceptibility of Important Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD) , 2012 .

[20]  E. Kindel,et al.  Efficacy of Chlorhexidine, Polihexanide and Tissue-Tolerable Plasma against Pseudomonas aeruginosa Biofilms Grown on Polystyrene and Silicone Materials , 2010, Skin Pharmacology and Physiology.

[21]  A. Kramer,et al.  Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet , 2010, New Journal of Physics.

[22]  T. Kohlmann,et al.  Antiseptic Efficacy and Tolerance of Tissue-Tolerable Plasma Compared with Two Wound Antiseptics on Artificially Bacterially Contaminated Eyes from Commercially Slaughtered Pigs , 2010, Skin Pharmacology and Physiology.

[23]  A. Kramer,et al.  Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds , 2010, Skin Pharmacology and Physiology.

[24]  M. Jünger,et al.  Antibacterial Activity of an Atmospheric Pressure Plasma Jet Against Relevant Wound Pathogens in vitro on a Simulated Wound Environment , 2010 .

[25]  A. Kramer,et al.  The Irritation Potential of Nonthermal Atmospheric Pressure Plasma in the HET‐CAM , 2010 .

[26]  A. Kettle,et al.  Modeling the Reactions of Superoxide and Myeloperoxidase in the Neutrophil Phagosome , 2006, Journal of Biological Chemistry.

[27]  I. Sadovskaya,et al.  Extracellular Carbohydrate-Containing Polymers of a Model Biofilm-Producing Strain, Staphylococcus epidermidis RP62A , 2005, Infection and Immunity.

[28]  T. E. Cloete,et al.  Resistance mechanisms of bacteria to antimicrobial compounds , 2003 .

[29]  J. O’Gara,et al.  Staphylococcus epidermidis biofilms: importance and implications. , 2001, Journal of medical microbiology.

[30]  D. G. Armstrong,et al.  Wound Microbiology and Associated Approaches to Wound Management , 2001, Clinical Microbiology Reviews.

[31]  A. D. Russell,et al.  Antiseptics and Disinfectants: Activity, Action, and Resistance , 1999, Clinical Microbiology Reviews.

[32]  K. Wagatsuma,et al.  Effect of oxygen addition to an argon glow-discharge plasma source in atomic emission spectrometry , 1995 .

[33]  A. Kramer,et al.  Application in Veterinary Medicine , 2018 .

[34]  G. Daeschlein Antimicrobial Activity of Plasma , 2018 .