An Overview and Future Perspectives of Aluminum Batteries

A critical overview of the latest developments in the aluminum battery technologies is reported. The substitution of lithium with alternative metal anodes characterized by lower cost and higher abundance is nowadays one of the most widely explored paths to reduce the cost of electrochemical storage systems and enable long‐term sustainability. Aluminum based secondary batteries could be a viable alternative to the present Li‐ion technology because of their high volumetric capacity (8040 mAh cm−3 for Al vs 2046 mAh cm−3 for Li). Additionally, the low cost aluminum makes these batteries appealing for large‐scale electrical energy storage. Here, we describe the evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, those based on non‐aqueous electrolytes. Particular attention has been dedicated to the latest development of electrolytic media characterized by low reactivity towards other cell components. The attention is then focused on electrode materials enabling the reversible aluminum intercalation‐deintercalation process. Finally, we touch on the topic of high‐capacity aluminum‐sulfur batteries, attempting to forecast their chances to reach the status of practical energy storage systems.

[1]  Faxing Wang,et al.  Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance. , 2016, ACS applied materials & interfaces.

[2]  L. Chen,et al.  Geometry and fast diffusion of AlCl4 cluster intercalated in graphite , 2016 .

[3]  J. Hassoun,et al.  Characterization of a reversible, low-polarization sodium-oxygen battery , 2016 .

[4]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[5]  Kazuki Yoshii,et al.  Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries. , 2016, Chemical communications.

[6]  W. Daud,et al.  Recent developments in materials for aluminum–air batteries: A review , 2015 .

[7]  E. Fatas,et al.  Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries , 2015 .

[8]  Huimin Lu,et al.  The effect of crystal orientation on the aluminum anodes of the aluminum–air batteries in alkaline electrolytes , 2015 .

[9]  You-ting Wu,et al.  Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents , 2015 .

[10]  Feng Wu,et al.  Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries , 2015 .

[11]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[12]  Masanobu Chiku,et al.  Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery. , 2015, ACS applied materials & interfaces.

[13]  Hamed Moghanni-Bavil-Olyaei,et al.  Performance of Al–1Mg–1Zn–0.1Bi–0.02In as anode for the Al–AgO battery , 2015 .

[14]  Ma Jing-ling,et al.  Electrochemical performances of Al–0.5Mg–0.1Sn–0.02In alloy in different solutions for Al–air battery , 2015 .

[15]  E. Menke,et al.  A Combined Experimental and Computational Study of an Aluminum Triflate/Diglyme Electrolyte. , 2015, The journal of physical chemistry. B.

[16]  Yi Cui,et al.  Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries. , 2015, ACS applied materials & interfaces.

[17]  Jun Lu,et al.  Progress in Mechanistic Understanding and Characterization Techniques of Li‐S Batteries , 2015 .

[18]  D. Aurbach,et al.  Review on Li‐Sulfur Battery Systems: an Integral Perspective , 2015 .

[19]  S. Jiao,et al.  A new aluminium-ion battery with high voltage, high safety and low cost. , 2015, Chemical communications.

[20]  Linxiao Geng,et al.  Reversible Electrochemical Intercalation of Aluminum in Mo6S8 , 2015 .

[21]  M. Wienk,et al.  Depositing Fullerenes in Swollen Polymer Layers via Sequential Processing of Organic Solar Cells , 2015 .

[22]  Huimin Lu,et al.  The effect of grain size on aluminum anodes for Al–air batteries in alkaline electrolytes , 2015 .

[23]  P. Johansson,et al.  Al conductive haloaluminate-free non-aqueous room-temperature electrolytes , 2015 .

[24]  L. Archer,et al.  A novel non-aqueous aluminum sulfur battery , 2015 .

[25]  J. Hassoun,et al.  A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode , 2015 .

[26]  Huimin Lu,et al.  Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries , 2015 .

[27]  C. Nithya,et al.  Sodium ion batteries: a newer electrochemical storage , 2015 .

[28]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[29]  Jusef Hassoun,et al.  A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. , 2015, ACS applied materials & interfaces.

[30]  Hong‐Jie Peng,et al.  Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. , 2015, ACS nano.

[31]  M. Nagamine,et al.  Sulfone-based electrolytes for aluminium rechargeable batteries. , 2015, Physical chemistry chemical physics : PCCP.

[32]  Bruno Scrosati,et al.  The Lithium/Air Battery: Still an Emerging System or a Practical Reality? , 2015, Advanced materials.

[33]  Jun Lu,et al.  Binder-free V2O5 cathode for greener rechargeable aluminum battery. , 2015, ACS applied materials & interfaces.

[34]  Xiao Liang,et al.  A highly efficient polysulfide mediator for lithium–sulfur batteries , 2015, Nature Communications.

[35]  Jens K Nørskov,et al.  Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. , 2015, The journal of physical chemistry letters.

[36]  Bruno Scrosati,et al.  Energy storage materials synthesized from ionic liquids. , 2014, Angewandte Chemie.

[37]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[38]  Y. Ein‐Eli,et al.  Aluminum–air battery based on an ionic liquid electrolyte , 2014 .

[39]  F Mueller,et al.  An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. , 2014, Nano letters.

[40]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[41]  Zhouguang Lu,et al.  The electrochemical behavior of Cl− assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries , 2014 .

[42]  A. Manivannan,et al.  Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future , 2014 .

[43]  B. Narayanan,et al.  Atomistic origin of superior performance of ionic liquid electrolytes for Al-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[44]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[45]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[46]  Ryohei Mori A novel aluminium–Air rechargeable battery with Al2O3 as the buffer to suppress byproduct accumulation directly onto an aluminium anode and air cathode , 2014 .

[47]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[48]  Jingling Ma,et al.  Performance of Al–0.5 Mg–0.02 Ga–0.1 Sn–0.5 Mn as anode for Al–air battery in NaCl solutions , 2014 .

[49]  A. Balducci,et al.  Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors , 2014 .

[50]  N. Hudak Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries , 2014 .

[51]  W. Chu,et al.  Retracted Article: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries , 2014 .

[52]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[53]  Wei Wang,et al.  A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation , 2013, Scientific Reports.

[54]  Robert J.K. Wood,et al.  Developments in electrode materials and electrolytes for aluminium-air batteries , 2013 .

[55]  J. Gerbec,et al.  A High Capacity Calcium Primary Cell Based on the Ca–S System , 2013 .

[56]  Ryohei Mori A new structured aluminium–air secondary battery with a ceramic aluminium ion conductor , 2013 .

[57]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[58]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[59]  Qian Wang,et al.  Density, Viscosity, and Conductivity of Lewis Acidic 1-Butyl- and 1-Hydrogen-3-methylimidazolium Chloroaluminate Ionic Liquids , 2013 .

[60]  Xueping Gao,et al.  Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries , 2012 .

[61]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[62]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[63]  Jun Liu,et al.  A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life , 2012, Advanced materials.

[64]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[65]  Mikhail S. Vlaskin,et al.  Aluminum as energy carrier: Feasibility analysis and current technologies overview , 2011 .

[66]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[67]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[68]  Guangyuan Zheng,et al.  Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. , 2011, Nano letters.

[69]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[70]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[71]  Lydie Viau,et al.  Ionogels, ionic liquid based hybrid materials. , 2011, Chemical Society reviews.

[72]  E. Khamis,et al.  Novel package for inhibition of aluminium corrosion in alkaline solutions , 2010 .

[73]  Volkmar M. Schmidt,et al.  Development of a Novel Zinc/Air Fuel Cell with a Zn Foam Anode, a PVA/KOH Membrane and a MnO2/SiOC-Based Air Cathode , 2010 .

[74]  Jeng‐Kuei Chang,et al.  Corrosion behaviors of materials in aluminum chloride–1-ethyl-3-methylimidazolium chloride ionic liquid , 2010 .

[75]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[76]  R. Short,et al.  Recent Developments of Semi-fuel Cells for Powering Underwater Sensors and Platforms , 2010 .

[77]  W. Chu,et al.  Preparation of monodispersed cobalt–boron spherical nanoparticles and their behavior during the catalytic decomposition of hydrous hydrazine , 2010 .

[78]  Wei Qu,et al.  A review on air cathodes for zinc–air fuel cells , 2010 .

[79]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[80]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[81]  F. Endres,et al.  An experimental and theoretical study of the aluminium species present in mixtures of AlCl3 with the ionic liquids [BMP]Tf2N and [EMIm]Tf2N. , 2009, Chemistry.

[82]  A. Bond,et al.  Aluminium speciation in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/AlCl3 mixtures. , 2009, Chemistry.

[83]  Lars Kloo,et al.  Ionic liquid electrolytes for dye-sensitized solar cells. , 2008, Dalton transactions.

[84]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[85]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[86]  P. Taberna,et al.  High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte , 2007 .

[87]  A. Lasia,et al.  Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids , 2006 .

[88]  A. Lasia,et al.  Electrodeposition of aluminium from ionic liquids: Part II - studies on the electrodeposition of aluminum from aluminum chloride (AICl3) - trimethylphenylammonium chloride (TMPAC) ionic liquids , 2006 .

[89]  Jun Chen,et al.  Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and mg/air battery applications. , 2006, Angewandte Chemie.

[90]  F. Endres,et al.  Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[91]  P. Kohl,et al.  Cation electrochemical stability in chloroaluminate ionic liquids. , 2005, The journal of physical chemistry. B.

[92]  Ramana G. Reddy,et al.  Recycling of aluminum metal matrix composite using ionic liquids:: Effect of process variables on current efficiency and deposit characteristics , 2005 .

[93]  D. Aurbach,et al.  The effect of milling on the performance of a Mo6S8 Chevrel phase as a cathode material for rechargeable Mg batteries , 2005 .

[94]  Mingming Zhang,et al.  New electrolytes for aluminum production: Ionic liquids , 2003 .

[95]  Peng Wang,et al.  Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. , 2003, Journal of the American Chemical Society.

[96]  Shao Hua Yang,et al.  Design and analysis of aluminum/air battery system for electric vehicles , 2002 .

[97]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[98]  S. Licht,et al.  Fluorinated graphites as energetic cathodes for nonaqueous Al batteries , 2002 .

[99]  D. Aurbach,et al.  Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes , 2002 .

[100]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[101]  S. Passerini,et al.  Intercalation of Polyvalent Cations into V2O5 Aerogels , 1998 .

[102]  S. Licht,et al.  Aluminum Anodic Behavior in Aqueous Sulfur Electrolytes , 1997 .

[103]  S. Licht Aluminum/Sulfur Battery Discharge in the High Current Domain , 1997 .

[104]  S. Licht,et al.  Disproportionation of Aqueous Sulfur and Sulfide: Kinetics of Polysulfide Decomposition , 1997 .

[105]  R. Dillon,et al.  The Low Current Domain of the Aluminum/Sulfur Battery , 1997 .

[106]  R. Armstrong,et al.  The mechanism of aluminium corrosion in alkaline solutions , 1996 .

[107]  R. Messina,et al.  Aluminium behaviour and stability in AlCl3DMSO2 electrolyte , 1996 .

[108]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[109]  R. Messina,et al.  Raman Study of Aluminum Chloride-Dimethylsulfone Solutions. , 1996, Inorganic chemistry.

[110]  S. Licht,et al.  A High Energy and Power Novel Aluminum/Nickel Battery , 1995 .

[111]  R. Messina,et al.  Sulfone-based electrolytes for aluminum electrodeposition , 1995 .

[112]  R. Messina,et al.  Behaviour of aluminium as anode in dimethylsulfone-based electrolytes , 1994 .

[113]  R. A. Osteryoung,et al.  Benzene polymerization in 1-ethyl-3-methylimidazolium chloride-AlCl3 ionic liquid , 1994 .

[114]  R. Messina,et al.  Electrodeposition Studies of Aluminum on Tungsten Electrode from DMSO 2 Electrolytes Determination of AlIII Species Diffusion Coefficients , 1994 .

[115]  H. A. Hjuler,et al.  Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes , 1993 .

[116]  S. Licht,et al.  A Solid Sulfur Cathode for Aqueous Batteries , 1993, Science.

[117]  C. Marsh,et al.  A Novel Aqueous Aluminum/Ferricyanide Battery , 1992 .

[118]  S. Mancini,et al.  Secondary aluminium-iron (III) chloride batteries with a low temperature molten salt electrolyte , 1992 .

[119]  J. Weaving,et al.  Experimental studies of transition metal chloride electrodes in undivided cells using molten NaAlCl4 electrolyte , 1991 .

[120]  Jinsong Tang,et al.  Formation and electrochemistry of polyaniline in ambient-temperature molten salts , 1991 .

[121]  Jennifer T. Joyce,et al.  Electrochemical Studies of Sodium Chloride as a Lewis Buffer for Room Temperature Chloroaluminate Molten Salts , 1990 .

[122]  H. A. Hjuler,et al.  Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts Influence of and Sulfide Addition , 1990 .

[123]  M.P. Lannot,et al.  Comparison of aluminum silver oxide and lithium oxyhalide batteries performances for underwater weapons propulsion , 1990, Proceedings of the 34th International Power Sources Symposium.

[124]  D. Macdonald,et al.  Development of anodes for aluminium/air batteries — solution phase inhibition of corrosion , 1989 .

[125]  M. Urquidi-Macdonald,et al.  Evaluation of alloy anodes for aluminum-air batteries. III: Mechanisms of activation, passivation, and hydrogen evolution , 1988 .

[126]  N. Takami,et al.  Anodic sulfidation of FeS electrode in a NaCl saturated AlCl3-NaCl melt , 1988 .

[127]  P. Gifford,et al.  An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte , 1988 .

[128]  R. A. Osteryoung,et al.  Electrochemistry of Polythiophene and Polybithiophene Films in Ambient Temperature Molten Salts , 1987 .

[129]  P. Gifford,et al.  A Substituted Imidazolium Chloroaluminate Molten Salt Possessing an Increased Electrochemical Window , 1987 .

[130]  P. Pickup,et al.  Charging and discharging rate studies of polypyrrole films in AlCl3: 1-methyl-(3-ethyl)-imidazolium chloride molten salts and in CH3CN , 1985 .

[131]  R. Marassi,et al.  Electrochemical and Spectroscopic Studies of Sulfur in Aluminum Chloride‐N‐(n‐Butyl)Pyridinium Chloride , 1985 .

[132]  G. F. Reynolds,et al.  Primary and secondary room temperature molten salt electrochemical cells , 1985 .

[133]  L. A. King,et al.  Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 1. Ion interactions by nuclear magnetic resonance spectroscopy , 1984 .

[134]  P. Pickup,et al.  Electrochemical Polymerization of Pyrrole and Electrochemistry of Polypyrrole Films in Ambient Temperature Molten Salts. , 1984 .

[135]  R. Marassi,et al.  Oxidation of Sulfur in Chloroaluminate Melts of Intermediate pCl , 1982 .

[136]  C. Hussey,et al.  Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis , 1982 .

[137]  R. J. Gale,et al.  Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures , 1979 .

[138]  G. Holleck The reduction of chlorine on carbon in AlCl3-KCl-NaCl melts. , 1972 .

[139]  Solomon Zaromb,et al.  The Use and Behavior of Aluminum Anodes in Alkaline Primary Batteries , 1962 .

[140]  S. Zaromb,et al.  Feasibility of Electrolyte Regeneration in Al Batteries , 1962 .

[141]  Jacob Kielland Individual Activity Coefficients of Ions in Aqueous Solutions , 1937 .

[142]  Kaiyu Liu,et al.  The electrochemical behavior of TiO2-NTAs electrode in H+ and Al3+coexistent aqueous solution , 2016 .

[143]  Ryohei Mori Addition of Ceramic Barriers to Aluminum–Air Batteries to Suppress By-product Formation on Electrodes , 2015 .

[144]  Huimin Lu,et al.  Performance of Al-0.5In as Anode for Al–Air Battery in Inhibited Alkaline Solutions , 2015 .

[145]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[146]  Xueping Gao,et al.  Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries , 2015 .

[147]  Huimin Lu,et al.  Performance of Al-Air Batteries Based on Al–Ga, Al–In and Al–Sn Alloy Electrodes , 2015 .

[148]  Huimin Lu,et al.  Performance of Al-0.6 Mg-0.05 Ga-0.1 Sn- 0.1 In as Anode for Al-Air Battery in KOH Electrolytes , 2015 .

[149]  Ryohei Mori A novel aluminium–air secondary battery with long-term stability , 2014 .

[150]  Quanan Li,et al.  Performance of Al−0.5 Mg−0.02 Ga−0.1 Sn−0.5 Mn as Anode for Al-Air Battery , 2014 .

[151]  M. S. Rao,et al.  Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery , 2013 .

[152]  E. Menke,et al.  The Roles of V2O5 and Stainless Steel in Rechargeable Al–Ion Batteries , 2013 .

[153]  Cuie Wen,et al.  High Energy Density Metal-Air Batteries: A Review , 2013 .

[154]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[155]  Bruno Scrosati,et al.  Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery , 2011 .

[156]  M. Noel,et al.  Electrochemical intercalation of aluminium chloride in graphite in the molten sodium chloroaluminate medium , 2003 .

[157]  S. Licht,et al.  Novel Aqueous Aluminum/Sulfur Batteries , 1993 .

[158]  Steven G. Bratsch,et al.  Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K , 1989 .

[159]  D. Donovan Geological Survey , 1984, Nature.

[160]  K. Grjotheim,et al.  Aluminium electrolysis : fundamentals of the Hall-Héroult process , 1982 .

[161]  M. Armand,et al.  Electrochemical method for characterization of graphite-aluminium chloride intercalation compounds , 1979 .

[162]  R. Marassi,et al.  Raman spectral studies of elemental sulfur in Al2Cl6 and chloroaluminate melts , 1978 .