A modified particle swarm optimization via particle visual modeling analysis

A particle is treated as a whole individual in all researches on particle swarm optimization (PSO) currently, these are not concerned with the information of every particle's dimensional vector. A visual modeling method describing particle's dimensional vector behavior is presented in this paper. Based on the analysis of visual modeling, the reason for premature convergence and diversity loss in PSO is explained, and a new modified algorithm is proposed to ensure the rational flight of every particle's dimensional component. Meanwhile, two parameters of particle-distribution-degree and particle-dimension-distance are introduced into the proposed algorithm in order to avoid premature convergence. Simulation results of the new PSO algorithm show that it has a better ability of finding the global optimum, and still keeps a rapid convergence as with the standard PSO.

[1]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[2]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[3]  Lehrstuhl für Elektrische,et al.  Gaussian swarm: a novel particle swarm optimization algorithm , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[4]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[5]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  Imtiaz Ahmad,et al.  Particle swarm optimization for task assignment problem , 2002, Microprocess. Microsystems.

[8]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[9]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[10]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[11]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).