In-situ x-ray characterization of wurtzite formation in GaAs nanowires

In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

[1]  L. Largeau,et al.  Wurtzite to zinc blende phase transition in GaAs nanowires induced by epitaxial burying. , 2008, Nano letters.

[2]  Jesse M. Kinder,et al.  On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. , 2011, Nano letters.

[3]  V. Consonni,et al.  Physical origin of the incubation time of self-induced GaN nanowires , 2011 .

[4]  M. Fanetti,et al.  Vapor-liquid-solid and vapor-solid growth of self-catalyzed GaAs nanowires , 2011 .

[5]  V. Dubrovskii,et al.  Growth kinetics and crystal structure of semiconductor nanowires , 2008 .

[6]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[7]  G. Abstreiter,et al.  Direct observation of a noncatalytic growth regime for GaAs nanowires. , 2011, Nano letters.

[8]  K. Dick,et al.  Gold-free growth of GaAs nanowires on silicon: arrays and polytypism , 2010, Nanotechnology.

[9]  H. Shtrikman,et al.  Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). , 2010, Nano letters.

[10]  J. Arbiol,et al.  Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy. , 2011, ACS nano.

[11]  H. You,et al.  Angle calculations for a `4S+2D' six-circle diffractometer , 1999 .

[12]  E. Vlieg A (2+3)-Type Surface Diffractometer: Mergence of the z-Axis and (2+2)-Type Geometries , 1998 .

[13]  M. Aagesen,et al.  Facet structure of GaAs nanowires grown by molecular beam epitaxy , 2007 .

[14]  W. Kaplan,et al.  Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires , 2010, Science.

[15]  R. Buczko,et al.  Modelling the structure of GaAs and InAs nanowires , 2008 .

[16]  S. Kodambaka,et al.  Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. , 2011, Physical review letters.

[17]  D. Zeze,et al.  Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy , 2010 .

[18]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[19]  M. Kaniber,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .

[20]  J. Nygård,et al.  Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction , 2010, Nanotechnology.

[21]  J. Tersoff,et al.  From droplets to nanowires: dynamics of vapor-liquid-solid growth. , 2009, Physical review letters.

[22]  Tomoki Yamashita,et al.  Theoretical investigation on the structural stability of GaAs nanowires with two different types of facets , 2010 .

[23]  P. Krogstrup,et al.  Impact of the liquid phase shape on the structure of III-V nanowires. , 2011, Physical review letters.

[24]  H. Renevier,et al.  Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy , 2009, Nanotechnology.

[25]  Philippe Caroff,et al.  Diameter Dependence of the Wurtzite-Zinc Blende Transition in InAs Nanowires , 2010 .

[26]  Philippe Caroff,et al.  Control of III–V nanowire crystal structure by growth parameter tuning , 2010 .

[27]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[28]  J. Mizuki,et al.  X-Ray Diffractometer for Studies on Molecular-Beam-Epitaxy Growth of III–V Semiconductors , 2002 .

[29]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.