In-situ x-ray characterization of wurtzite formation in GaAs nanowires
暂无分享,去创建一个
Robert Feidenhans'l | Masamitu Takahasi | Jesper Nygård | Peter Krogstrup | Wen Hu | P. Krogstrup | M. Takahasi | M. Kozu | Wen Hu | J. Nygård | R. Feidenhans'l | M. Madsen | Morten Madsen | Miwa Kozu | Yuka Nakata | Y. Nakata
[1] L. Largeau,et al. Wurtzite to zinc blende phase transition in GaAs nanowires induced by epitaxial burying. , 2008, Nano letters.
[2] Jesse M. Kinder,et al. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. , 2011, Nano letters.
[3] V. Consonni,et al. Physical origin of the incubation time of self-induced GaN nanowires , 2011 .
[4] M. Fanetti,et al. Vapor-liquid-solid and vapor-solid growth of self-catalyzed GaAs nanowires , 2011 .
[5] V. Dubrovskii,et al. Growth kinetics and crystal structure of semiconductor nanowires , 2008 .
[6] Gerhard Abstreiter,et al. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .
[7] G. Abstreiter,et al. Direct observation of a noncatalytic growth regime for GaAs nanowires. , 2011, Nano letters.
[8] K. Dick,et al. Gold-free growth of GaAs nanowires on silicon: arrays and polytypism , 2010, Nanotechnology.
[9] H. Shtrikman,et al. Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). , 2010, Nano letters.
[10] J. Arbiol,et al. Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy. , 2011, ACS nano.
[11] H. You,et al. Angle calculations for a `4S+2D' six-circle diffractometer , 1999 .
[12] E. Vlieg. A (2+3)-Type Surface Diffractometer: Mergence of the z-Axis and (2+2)-Type Geometries , 1998 .
[13] M. Aagesen,et al. Facet structure of GaAs nanowires grown by molecular beam epitaxy , 2007 .
[14] W. Kaplan,et al. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires , 2010, Science.
[15] R. Buczko,et al. Modelling the structure of GaAs and InAs nanowires , 2008 .
[16] S. Kodambaka,et al. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. , 2011, Physical review letters.
[17] D. Zeze,et al. Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy , 2010 .
[18] Gilles Patriarche,et al. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.
[19] M. Kaniber,et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .
[20] J. Nygård,et al. Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction , 2010, Nanotechnology.
[21] J. Tersoff,et al. From droplets to nanowires: dynamics of vapor-liquid-solid growth. , 2009, Physical review letters.
[22] Tomoki Yamashita,et al. Theoretical investigation on the structural stability of GaAs nanowires with two different types of facets , 2010 .
[23] P. Krogstrup,et al. Impact of the liquid phase shape on the structure of III-V nanowires. , 2011, Physical review letters.
[24] H. Renevier,et al. Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy , 2009, Nanotechnology.
[25] Philippe Caroff,et al. Diameter Dependence of the Wurtzite-Zinc Blende Transition in InAs Nanowires , 2010 .
[26] Philippe Caroff,et al. Control of III–V nanowire crystal structure by growth parameter tuning , 2010 .
[27] R. S. Wagner,et al. VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .
[28] J. Mizuki,et al. X-Ray Diffractometer for Studies on Molecular-Beam-Epitaxy Growth of III–V Semiconductors , 2002 .
[29] Elias Vlieg,et al. Twinning superlattices in indium phosphide nanowires , 2008, Nature.