Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode

A synergic combination of a soluble -redox mediator and a protected Li metal -electrode to prevent the self-discharge of the redox mediator is realized by -exploiting a 2,2,6,6-tetramethylpiperidinyl 1-oxyl (TEMPO) redox mediator and an Al2 O3 /PVdF-HFP composite -protective layer (CPL). Stabilization of Li metal by simple CPL coating is effective at -suppressing the chemical reduction of the oxidized TEMPO and opens up the possibility of sustainable redox mediation for robust cycling of Li-O2 batteries.

[1]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[2]  Jeff Dahn,et al.  The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells , 2006 .

[3]  Khalil Amine,et al.  Redox shuttles for safer lithium-ion batteries , 2009 .

[4]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[5]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[6]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[7]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[8]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[9]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[10]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[11]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[12]  Anthony K. Burrell,et al.  Limited Stability of Ether-Based Solvents in Lithium–Oxygen Batteries , 2012 .

[13]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[14]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[15]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[16]  Xueliang Sun,et al.  Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries , 2013 .

[17]  Donald J. Siegel,et al.  Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries , 2013 .

[18]  Hsien‐Hau Wang,et al.  Degradation and revival of Li–O2 battery cathode , 2013 .

[19]  Dan Zhao,et al.  Reversibility of anodic lithium in rechargeable lithium–oxygen batteries , 2013, Nature Communications.

[20]  Xin-bo Zhang,et al.  Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. , 2013, Angewandte Chemie.

[21]  Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (PEDOT) in Li-O2 battery , 2013 .

[22]  H. Byon,et al.  Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. , 2013, Nano letters.

[23]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[24]  Yongyao Xia,et al.  Li-O₂ batteries: an agent for change. , 2013, Nature chemistry.

[25]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[26]  Stefano Meini,et al.  Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells. , 2013, Physical chemistry chemical physics : PCCP.

[27]  Sung Ho Song,et al.  Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. , 2013, Nano letters.

[28]  Tao Zhang,et al.  Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes , 2013 .

[29]  Seoin Back,et al.  Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst , 2014, Scientific Reports.

[30]  Y. Park,et al.  New strategy toward enhanced air electrode for Li–air batteries: apply a polydopamine coating and dissolved catalyst , 2014 .

[31]  Taewoo Kim,et al.  Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. , 2014, Angewandte Chemie.

[32]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[33]  Jürgen Janek,et al.  TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. , 2014, Journal of the American Chemical Society.

[34]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[35]  D. J. Lee,et al.  Composite protective layer for Li metal anode in high-performance lithium–oxygen batteries , 2014 .

[36]  Kyeongse Song,et al.  Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts , 2014 .

[37]  Dong Jin Lee,et al.  A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries , 2015 .

[38]  Ping He,et al.  Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery. , 2015, ChemSusChem.

[39]  D. Geng,et al.  Investigation on the Cyclability of Lithium-Oxygen Cells in a Confined Potential Window using Cathodes with Pre-filled Discharge Products. , 2015, Chemistry, an Asian journal.