Analysis and Specificities of Adhesive Forces Between Microscale and Nanoscale

Despite a large number of proofs of concept in nanotechnologies (e.g., nanosensors), nanoelectromechanical systems (NEMS) hardly come to the market. One of the bottlenecks is the packaging of NEMS which require handling, positioning, assembling and joining strategies in the mesoscale (from 100 nm to 10 μm, between nanoscale and microscale). It requires models of the interaction forces and adhesion forces dedicated to this particular scale. This paper presents several characteristics of the mesoscale in comparison with nanoscale and microscale. First, it is shown that the distributions of charges observed on the micro-objects and meso-objects would have negligible effects on the nano-objects. Second, the impact of both chemical functionalization and physical nanostructuration on adhesion are presented. Third, the van der Waals forces are increased by local deformations on the mesoscale contrary to the nanoscale where the deformation is negligible. This paper shows some typical characteristics of the mesoscale.

[1]  Alain Delchambre,et al.  Assembly of a Micro Ball-Bearing using a Capillary Gripper and a Microcomponent Feeder , 2008, IPAS.

[2]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Stéphane Régnier,et al.  Microrobotics for Micromanipulation. , 2010 .

[4]  V. Adrian Parsegian,et al.  Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2005 .

[5]  Dayou Li,et al.  Robotic nanoassembly: current developments and challenges , 2011, Int. J. Comput. Appl. Technol..

[6]  Michaël Gauthier,et al.  Silicon end-effectors for microgripping tasks , 2009 .

[7]  Alain Delchambre,et al.  Electrostatic forces in micromanipulations: Review of analytical models and simulations including roughness , 2007 .

[8]  Sergej Fatikow,et al.  Automated nanorobotic handling of bio- and nano-materials , 2010, 2010 IEEE International Conference on Automation Science and Engineering.

[9]  Michaël Gauthier,et al.  Submerged Robotic Micromanipulation and Dielectrophoretic Micro-object Release , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[10]  Ali Ata,et al.  Adhesion between nanoscale rough surfaces. I. Role of asperity geometry , 2000 .

[11]  Aude Bolopion,et al.  Haptic Teleoperation for 3-D Microassembly of Spherical Objects , 2012, IEEE/ASME Transactions on Mechatronics.

[12]  G H Pollack,et al.  EFFECT OF PARTICLE DIAMETER ON EXCLUSION-ZONE SIZE. , 2011, International journal of design & nature and ecodynamics : a transdisciplinary journal relating to nature, science and the humanities.

[13]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[14]  Wilfrid Boireau,et al.  Reduction of a micro-object's adhesion using chemical functionalisation , 2009 .

[15]  Amy E. Childress,et al.  Membrane–Colloid Interactions: Comparison of Extended DLVO Predictions with AFM Force Measurements , 2002 .

[16]  Jacob N. Israelachvili,et al.  The nature of van der waals forces , 1974 .

[17]  S Fatikow,et al.  Nanobits: customizable scanning probe tips. , 2009, Nanotechnology.

[18]  Paolo Dario,et al.  A Miniaturized Mechatronic System Inspired by Plant Roots for Soil Exploration , 2011, IEEE/ASME Transactions on Mechatronics.

[19]  Stephane Regnier,et al.  A van der Waals Force-Based Adhesion Model for Micromanipulation , 2010 .

[20]  Alain Delchambre,et al.  Theoretical and experimental study of electrostatic forces applied to micromanipulations: influence of surface topography , 2008 .

[21]  Quan Zhou,et al.  Hybrid Microassembly Combining Robotics and Water Droplet Self-Alignment , 2010, IEEE Transactions on Robotics.

[22]  Mari-Ann Einarsrud,et al.  AFM measurements of forces between silica surfaces , 2012, Journal of Sol-Gel Science and Technology.

[23]  Stephane Regnier,et al.  Robotic Microassembly: Gauthier/Robotic Micro-Assembly , 2010 .

[24]  D. ben-Avraham Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2006 .

[25]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[26]  Fumihito Arai,et al.  Multi-beam bilateral teleoperation of holographic optical tweezers. , 2012, Optics express.

[27]  Wilfrid Boireau,et al.  Adhesion forces controlled by chemical self-assembly and pH: application to robotic microhandling. , 2009, ACS applied materials & interfaces.

[28]  Hui Xie,et al.  Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback , 2009 .

[29]  Quan Zhou,et al.  Simulating adhesion forces between arbitrarily shaped objects in micro/nano-handling operations , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[30]  J. Drelich,et al.  Pull-off force measurements between rough surfaces by atomic force microscopy. , 2002, Journal of colloid and interface science.

[31]  Svetan M. Ratchev,et al.  Micro-Assembly Technologies and Applications , 2008 .

[32]  William L. Cleghorn,et al.  Parallel microassembly with a robotic manipulation system , 2010 .

[33]  Fumihito Arai,et al.  Massive parallel assembly of microbeads for fabrication of microtools having spherical structure and powerful laser manipulation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[34]  Michaël Gauthier,et al.  Adhesion control for micro- and nanomanipulation. , 2011, ACS nano.

[35]  Jochen Mattay,et al.  Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors , 2010, Beilstein journal of nanotechnology.

[36]  Roe-Hoan Yoon,et al.  AFM forces measured between gold surfaces coated with self-assembled monolayers of 1-hexadecanethiol. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[37]  Michaël Gauthier,et al.  Reducing the adhesion between surfaces using surface structuring with PS latex particle. , 2010, ACS applied materials & interfaces.

[38]  Adha Imam Cahyadi,et al.  Robotic Micro-Assembly , 2012 .

[39]  Michaël Gauthier,et al.  Modeling the trajectory of a micro particle in a dielectrophoresis device for dynamic control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[40]  Philippe Lutz,et al.  Study of Forces During Microassembly Tasks Using Two-Sensing-Fingers Grippers , 2012, IEEE/ASME Transactions on Mechatronics.

[41]  Stephane Regnier,et al.  Variation of the Electrostatic Adhesion Force on a Rough Surface due to the Deformation of Roughness Asperities During Micromanipulation of a Spherical Rigid Body , 2009 .

[42]  Stephane Regnier,et al.  Analysis of forces for micromanipulations in dry and liquid media , 2006 .

[43]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[44]  Michaël Gauthier,et al.  Modeling the trajectory of a micro particle in a dielectrophoresis device for dynamic control , 2009, 2010 IEEE International Conference on Robotics and Automation.

[45]  Xiang-Jun Zhang Van der Waals Forces , 2013 .

[46]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[47]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[48]  Quan Zhou,et al.  Van der Waals force computation of freely oriented rough surfaces for micromanipulation purposes , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Karl F. Böhringer Engineered Self-assembly From Nano to Milli Scales , 2008 .

[50]  Younes Makoudi,et al.  Self-assembly of zwitterionic molecules on a Au(23 23 21) surface at low temperature , 2010 .

[51]  Michaël Gauthier,et al.  Nanostructured Nonadhesive Surfaces for Micro- and Nanomanipulation , 2012 .