On a class of two-dimensional incomplete Riemann solvers
暂无分享,去创建一个
Manuel Jesús Castro Díaz | José M. Gallardo | Kleiton A. Schneider | Kleiton A. Schneider | M. Díaz | J. Gallardo
[1] Carlos Parés,et al. Relation between PVM schemes and simple Riemann solvers , 2014 .
[2] Tong Zhang,et al. Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems , 1990 .
[3] Laurent Gosse,et al. A Two-Dimensional Version of the Godunov Scheme for Scalar Balance Laws , 2014, SIAM J. Numer. Anal..
[4] Dinshaw S. Balsara. Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..
[5] Rémi Abgrall,et al. Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows , 2014, J. Comput. Phys..
[6] Kun Xu,et al. A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics , 2000 .
[7] D. Newman. Rational approximation to | x , 1964 .
[8] Manuel Jesús Castro Díaz,et al. Approximate Osher-Solomon schemes for hyperbolic systems , 2016, Appl. Math. Comput..
[9] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[10] Manuel Jesús Castro Díaz,et al. A Class of Computationally Fast First Order Finite Volume Solvers: PVM Methods , 2012, SIAM J. Sci. Comput..
[11] S. Mishra,et al. Splitting based finite volume schemes for ideal MHD equations , 2009, J. Comput. Phys..
[12] Chi-Wang Shu,et al. Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..
[13] Edouard Audit,et al. A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws , 2015, J. Comput. Phys..
[14] Manuel Jesús Castro Díaz,et al. A Class of Incomplete Riemann Solvers Based on Uniform Rational Approximations to the Absolute Value Function , 2014, J. Sci. Comput..
[15] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .
[16] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[17] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[18] Dinshaw S. Balsara. A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..
[19] Michael Dumbser,et al. On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .
[20] Susana Serna,et al. A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations , 2009, J. Comput. Phys..
[21] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[22] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[23] Manuel Jesús Castro Díaz,et al. Jacobian-free approximate solvers for hyperbolic systems: Application to relativistic magnetohydrodynamics , 2017, Comput. Phys. Commun..
[24] A. Laub,et al. Rational iterative methods for the matrix sign function , 1991 .
[25] James P. Collins,et al. Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..
[26] Kenneth G. Powell,et al. AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .
[27] Phillip Colella,et al. A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..
[28] Guang-Shan Jiang,et al. A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .
[29] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[30] Burton Wendroff,et al. A two-dimensional HLLE riemann solver and associated godunov-type difference scheme for gas dynamics☆ , 1999 .
[31] Pierre Degond,et al. Polynomial upwind schemes for hyperbolic systems , 1999 .
[32] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[33] S. Orszag,et al. Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.
[34] Richard Liska,et al. Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..
[35] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[36] Xu-Dong Liu,et al. Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..