Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time

Recent developments and ubiquitous use of global positioning devices have revolutionised movement ecology. Scientists are able to collect increasingly larger movement datasets at increasingly smaller spatial and temporal resolutions. These data consist of trajectories in space and time, represented as time series of measured locations for each tagged animal. Such data are analysed and visualised using methods for estimation of home range or utilisation distribution, which are often based on 2D kernel density in geographic space. These methods have been developed for much sparser and smaller datasets obtained through very high frequency (VHF) radio telemetry. They focus on the spatial distribution of measurement locations and ignore time and sequentiality of measurements. We present an alternative geovisualisation method for spatio-temporal aggregation of trajectories of tagged animals: stacked space-time densities. The method was developed to visually portray temporal changes in animal use of space using a volumetric display in a space-time cube. We describe the algorithm for calculation of stacked densities using four different decay functions, normally used in space use studies: linear decay, bisquare decay, Gaussian decay and Brownian decay. We present a case study, where we visualise trajectories of lesser black backed gulls, collected over 30 days. We demonstrate how the method can be used to evaluate temporal site fidelity of each bird through identification of two different temporal movement patterns in the stacked density volume: spatio-temporal hot spots and spatial-only hot spots.

[1]  Mary J. McDerby,et al.  Geographic visualization : concepts, tools and applications , 2008 .

[2]  T. Nelson,et al.  Time geography and wildlife home range delineation , 2012 .

[3]  Willem Bouten,et al.  Geostatistical analysis of GPS trajectory data: Space-time densities , 2008 .

[4]  Melissa S. Bowlin,et al.  Technology on the Move: Recent and Forthcoming Innovations for Tracking Migratory Birds , 2011 .

[5]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[6]  Joshua J. Millspaugh,et al.  Factors affecting space use overlap by white-tailed deer in an urban landscape , 2011, Int. J. Geogr. Inf. Sci..

[7]  Joni A. Downs,et al.  Time-Geographic Density Estimation for Moving Point Objects , 2010, GIScience.

[8]  Simon Benhamou,et al.  Beyond the Utilization Distribution: Identifying home range areas that are intensively exploited or repeatedly visited , 2012 .

[9]  Tobias Isenberg,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[10]  C. J. Camphuijsen,et al.  A historical ecology of two closely related gull species (Laridae) , 2013 .

[11]  B. J. Worton,et al.  A review of models of home range for animal movement , 1987 .

[12]  R. Powell,et al.  An Evaluation of the Accuracy of Kernel Density Estimators for Home Range Analysis , 1996 .

[13]  Bart Kranstauber,et al.  A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. , 2012, The Journal of animal ecology.

[14]  Stefan Peters,et al.  Visualizing Crowd Movement Patterns Using a Directed Kernel Density Estimation , 2013 .

[15]  Chun-Houh Chen,et al.  Handbook of Data Visualization , 2016 .

[16]  Kevin S. McKelvey,et al.  Estimation of habitat selection for central-place foraging animals. , 1999 .

[17]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[18]  Gennady Andrienko,et al.  A General Framework for Using Aggregation in Visual Exploration of Movement Data , 2010 .

[19]  Stephen M. Krone,et al.  Analyzing animal movements using Brownian bridges. , 2007, Ecology.

[20]  John Fieberg,et al.  Kernel density estimators of home range: smoothing and the autocorrelation red herring. , 2007, Ecology.

[21]  Jarke J. van Wijk,et al.  Interactive visualization of multivariate trajectory data with density maps , 2011, 2011 IEEE Pacific Visualization Symposium.

[22]  Yan Ropert-Coudert,et al.  Diving into the world of biologging , 2009 .

[23]  Torsten Hägerstrand REFLECTIONS ON “WHAT ABOUT PEOPLE IN REGIONAL SCIENCE?” , 1989 .

[24]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[25]  Bettina Speckmann,et al.  Analysis and visualization of animal movement , 2012, Biology Letters.

[26]  Mark W. Horner,et al.  A Characteristic‐Hull Based Method for Home Range Estimation , 2009, Trans. GIS.

[27]  Gary C. White,et al.  Autocorrelation of location estimates and the analysis of radiotracking data , 1999 .

[28]  Simon Benhamou,et al.  Periodicity analysis of movement recursions. , 2013, Journal of theoretical biology.

[29]  Mark W. Horner,et al.  Time-geographic density estimation for home range analysis , 2011, Ann. GIS.

[30]  Wayne M. Getz,et al.  LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions , 2007, PloS one.

[31]  J. C. Brito Seasonal Variation in Movements, Home Range, and Habitat Use by Male Vipera latastei in Northern Portugal , 2003 .

[32]  Biosciences Colloquium,et al.  Analysis of ecological systems , 1980 .

[33]  M. C. Jones,et al.  Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .

[34]  Stephan R. Sain,et al.  Multivariate Visualization by Density Estimation , 2008 .

[35]  E. V. van Loon,et al.  From Sensor Data to Animal Behaviour: An Oystercatcher Example , 2012, PloS one.

[36]  Joel s. Brown,et al.  Foraging : behavior and ecology , 2007 .

[37]  B. Worton Kernel methods for estimating the utilization distribution in home-range studies , 1989 .

[38]  Cláudio T. Silva,et al.  Direct Volume Rendering: A 3D Plotting Technique for Scientific Data , 2008, Computing in Science & Engineering.

[39]  Simon Benhamou,et al.  Dynamic Approach to Space and Habitat Use Based on Biased Random Bridges , 2011, PloS one.

[40]  W. Bouten,et al.  A Comparative Analysis of the Influence of Weather on the Flight Altitudes of Birds , 2006 .

[41]  Sandro Lovari,et al.  Effects of sampling regime on the mean and variance of home range size estimates. , 2006, The Journal of animal ecology.

[42]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[43]  C. Holden Inching Toward Movement Ecology , 2006, Science.

[44]  Mark W. Horner,et al.  Analysing infrequently sampled animal tracking data by incorporating generalized movement trajectories with kernel density estimation , 2012, Comput. Environ. Urban Syst..

[45]  Menno-Jan Kraak,et al.  Geovisualization and time : new opportunities for the space - time cube , 2008 .

[46]  Henry Campa,et al.  Migration and seasonal range dynamics of deer using adjacent deeryards in northern Michigan , 1998 .

[47]  Hong Zhou,et al.  Quantitative effectiveness measures for direct volume rendered images , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[48]  Simon Benhamou,et al.  Incorporating Movement Behavior and Barriers to Improve Kernel Home Range Space Use Estimates , 2010 .

[49]  Markus Hadwiger,et al.  Real‐Time Ray‐Casting and Advanced Shading of Discrete Isosurfaces , 2005, Comput. Graph. Forum.

[50]  Wayne M. Getz,et al.  A local nearest-neighbor convex-hull construction of home ranges and utilization distributions , 2004 .

[51]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[52]  D. Brillinger,et al.  An exploratory data analysis (EDA) of the paths of moving animals , 2004 .

[53]  Willem Bouten,et al.  A flexible GPS tracking system for studying bird behaviour at multiple scales , 2012, Journal of Ornithology.

[54]  Francesca Cagnacci,et al.  The home-range concept: are traditional estimators still relevant with modern telemetry technology? , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  Peter N. Laver,et al.  A Critical Review of Home Range Studies , 2008 .

[56]  Jon S. Horne,et al.  Correcting Home-Range Models for Observation Bias , 2007 .

[57]  Trisalyn A. Nelson,et al.  A review of quantitative methods for movement data , 2013, Int. J. Geogr. Inf. Sci..