Distributed Face Recognition Using Multiple Kernel Discriminant Analysis in Wireless Sensor Networks

This paper proposes a module based distributed wireless face recognition system by integrating multiple kernel discriminant analysis with face recognition in wireless sensor networks. By maximizing the margin maximization criterion (MMC), we separately perform an iterative scheme for kernel parameter optimization for each module. The simulation on the FERET and CMU PIE face databases shows that our multiple kernel framework and the optimization procedure achieve high recognition performance, compared with single-kernel-based KDDA.

[1]  Kristin P. Bennett,et al.  MARK: a boosting algorithm for heterogeneous kernel models , 2002, KDD.

[2]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[3]  Songcan Chen,et al.  MultiK-MHKS: A Novel Multiple Kernel Learning Algorithm , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Hamid Aghajan,et al.  Collaborative Face Orientation Detection in Wireless Image Sensor Networks , 2006 .

[5]  Jinbo Bi,et al.  Column-generation boosting methods for mixture of kernels , 2004, KDD.

[6]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[9]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[10]  Bin Zhang,et al.  Face Recognition in Mobile Wireless Sensor Networks , 2013, Int. J. Distributed Sens. Networks.

[11]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[12]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[13]  J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations , 1909 .

[14]  Guo-Can Feng,et al.  Multiple Kernel Learning in Fisher Discriminant Analysis for Face Recognition , 2013 .

[15]  Gunnar Rätsch,et al.  A General and Efficient Multiple Kernel Learning Algorithm , 2005, NIPS.

[16]  Farzin Mokhtarian,et al.  Efficient face recognition for wireless surveillance systems , 2007 .

[17]  Tao Jiang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[18]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[19]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[21]  Lisa Ann Osadciw,et al.  Increased Efficiency of Face Recognition System using Wireless Sensor Network , 2013 .

[22]  Pedro E. López-de-Teruel,et al.  Nonlinear kernel-based statistical pattern analysis , 2001, IEEE Trans. Neural Networks.

[23]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[24]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[25]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[26]  Yongsheng Gao,et al.  Face recognition across pose: A review , 2009, Pattern Recognit..

[27]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.