A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing

Abstract. Recent years have seen the increasing inclusion of per-retrieval prognostic (predictive) uncertainty estimates within satellite aerosol optical depth (AOD) data sets, providing users with quantitative tools to assist in the optimal use of these data. Prognostic estimates contrast with diagnostic (i.e. relative to some external truth) ones, which are typically obtained using sensitivity and/or validation analyses. Up to now, however, the quality of these uncertainty estimates has not been routinely assessed. This study presents a review of existing prognostic and diagnostic approaches for quantifying uncertainty in satellite AOD retrievals, and it presents a general framework to evaluate them based on the expected statistical properties of ensembles of estimated uncertainties and actual retrieval errors. It is hoped that this framework will be adopted as a complement to existing AOD validation exercises; it is not restricted to AOD and can in principle be applied to other quantities for which a reference validation data set is available. This framework is then applied to assess the uncertainties provided by several satellite data sets (seven over land, five over water), which draw on methods from the empirical to sensitivity analyses to formal error propagation, at 12 Aerosol Robotic Network (AERONET) sites. The AERONET sites are divided into those for which it is expected that the techniques will perform well and those for which some complexity about the site may provide a more severe test. Overall, all techniques show some skill in that larger estimated uncertainties are generally associated with larger observed errors, although they are sometimes poorly calibrated (i.e. too small or too large in magnitude). No technique uniformly performs best. For powerful formal uncertainty propagation approaches such as optimal estimation, the results illustrate some of the difficulties in appropriate population of the covariance matrices required by the technique. When the data sets are confronted by a situation strongly counter to the retrieval forward model (e.g. potentially mixed land–water surfaces or aerosol optical properties outside the family of assumptions), some algorithms fail to provide a retrieval, while others do but with a quantitatively unreliable uncertainty estimate. The discussion suggests paths forward for the refinement of these techniques.

[1]  N. Schutgens Site representativity of AERONET and GAW remotely sensed AOT and AAOT observations , 2019 .

[2]  M. Witek,et al.  Oceanic Aerosol Loading Derived From MISR's 4.4 km (V23) Aerosol Product , 2019, Journal of Geophysical Research: Atmospheres.

[3]  A. Sayer,et al.  How should we aggregate data? Methods accounting for the numerical distributions, with an assessment of aerosol optical depth , 2019, Atmospheric Chemistry and Physics.

[4]  D. Degenstein,et al.  A Multiwavelength Retrieval Approach for Improved OSIRIS Aerosol Extinction Retrievals , 2019, Journal of Geophysical Research: Atmospheres.

[5]  Christopher J. Merchant,et al.  Applying principles of metrology to historical Earth observations from satellites , 2019, Metrologia.

[6]  Roy G. Grainger,et al.  Toward More Representative Gridded Satellite Products , 2019, IEEE Geoscience and Remote Sensing Letters.

[7]  N. Christina Hsu,et al.  Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land , 2019, Journal of Geophysical Research: Atmospheres.

[8]  N. C. Hsu,et al.  VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long‐Term Aerosol Data Records , 2019, Journal of Geophysical Research: Atmospheres.

[9]  Feng Xu,et al.  A Correlated Multi-Pixel Inversion Approach for Aerosol Remote Sensing , 2019, Remote. Sens..

[10]  Woogyung V. Kim,et al.  Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data , 2019, Atmospheric Measurement Techniques.

[11]  Marta Luffarelli,et al.  Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 2: application to geostationary and polar-orbiting satellite observations , 2019, Atmospheric Measurement Techniques.

[12]  Sonoyo Mukai,et al.  Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[13]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[14]  Margaret C. Johnson,et al.  Estimating and Reporting Uncertainties in Remotely Sensed Atmospheric Composition and Temperature , 2019 .

[15]  Woogyung V. Kim,et al.  Validation of SOAR VIIRS Over‐Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record , 2018, Journal of Geophysical Research: Atmospheres.

[16]  O. Torres,et al.  A 12-year long global record of optical depth of absorbing aerosols above the clouds derived from the OMI/OMACA algorithm , 2018, Atmospheric Measurement Techniques.

[17]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[18]  T. Nakajima,et al.  Remote sensing of aerosol properties from multi-wavelength and multi-pixel information over the ocean , 2018, Atmospheric Chemistry and Physics.

[19]  Sara Basart,et al.  Status and future of numerical atmospheric aerosol prediction with a focus on data requirements , 2018, Atmospheric Chemistry and Physics.

[20]  Anne Garnier,et al.  Extinction and optical depth retrievals for CALIPSO's Version 4 data release , 2018, Atmospheric Measurement Techniques.

[21]  Robert C. Levy,et al.  Correcting for trace gas absorption when retrieving aerosol optical depth from satellite observations of reflected shortwave radiation , 2018, Atmospheric Measurement Techniques.

[22]  Hiroshi Murakami,et al.  Common Retrieval of Aerosol Properties for Imaging Satellite Sensors , 2018 .

[23]  V. Kolehmainen,et al.  Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land , 2018 .

[24]  Michael J. Garay,et al.  Improving MISR AOD Retrievals With Low-Light-Level Corrections for Veiling Light , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[25]  T. Clarmann,et al.  MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere , 2018 .

[26]  Zhengqiang Li,et al.  GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia , 2018 .

[27]  Marta Luffarelli,et al.  Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 1: theoretical concept , 2017, Atmospheric Measurement Techniques.

[28]  S. Mukai Algorithm Theoretical Basis Document: Aerosol Retrieval by Polarization with GCOM-C/SGLI , 2018 .

[29]  Edith Rodriguez,et al.  Collocation mismatch uncertainties in satellite aerosol retrieval validation , 2017 .

[30]  Philippe Xu,et al.  The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis , 2017 .

[31]  N. C. Hsu,et al.  Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements , 2017, Journal of geophysical research. Atmospheres : JGR.

[32]  X. Calbet,et al.  Validation practices for satellite‐based Earth observation data across communities , 2017 .

[33]  Michael J. Garay,et al.  New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water , 2017 .

[34]  M. Schulz,et al.  On the spatio-temporal representativeness of observations , 2017 .

[35]  Linlu Mei,et al.  Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results. , 2017, Remote sensing of environment.

[36]  Wolfgang Wagner,et al.  Uncertainty information in climate data records from Earth observation , 2017 .

[37]  Michael J. Garay,et al.  Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data , 2017 .

[38]  Marko Laine,et al.  Aerosol-type retrieval and uncertainty quantification from OMI data , 2017 .

[39]  John R. Townshend,et al.  Development of an operational land water mask for MODIS Collection 6, and influence on downstream data products , 2017, Int. J. Digit. Earth.

[40]  J. G. Levine,et al.  Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa , 2016 .

[41]  A. Lacis,et al.  Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations , 2016, Journal of geophysical research. Atmospheres : JGR.

[42]  D. Fussen,et al.  AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations - Part 1: Algorithm description , 2016 .

[43]  Lorraine A. Remer,et al.  A surface reflectance scheme for retrieving aerosol optical depth over urbansurfaces in MODIS Dark Target retrieval algorithm , 2016 .

[44]  Brent N. Holben,et al.  Validation and expected error estimation of Suomi‐NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET , 2016 .

[45]  Gerrit de Leeuw,et al.  The ADV/ASV AATSR aerosol retrieval algorithm: current status and presentation of a full-mission AOD dataset , 2016, Int. J. Digit. Earth.

[46]  Z. Ahmad,et al.  The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type , 2016 .

[47]  Michael Schulz,et al.  Will a perfect model agree with perfect observations? The impact of spatial sampling , 2016 .

[48]  Beat Schmid,et al.  Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies , 2016 .

[49]  Yong Xue,et al.  Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) , 2016, Remote. Sens..

[50]  Michael I. Mishchenko,et al.  Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data , 2015, Remote. Sens..

[51]  Roy G. Grainger,et al.  Known and unknown unknowns: Uncertainty estimation in satellite remote sensing data , 2015 .

[52]  Steven Platnick,et al.  Simultaneously inferring above‐cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS , 2015 .

[53]  R. Sica,et al.  Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method. , 2014, Applied optics.

[54]  Yujie Wang,et al.  Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements , 2014 .

[55]  K. Tsigaridis,et al.  Model‐based estimation of sampling‐caused uncertainty in aerosol remote sensing for climate research applications , 2014 .

[56]  Hiren Jethva,et al.  Assessment of OMI near‐UV aerosol optical depth over land , 2014 .

[57]  Satoru Fukuda,et al.  New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO‐Cloud and Aerosol Imager , 2013 .

[58]  Kai Zhang,et al.  MAC‐v1: A new global aerosol climatology for climate studies , 2013 .

[59]  Lorraine A. Remer,et al.  Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends , 2013 .

[60]  A. Chédin,et al.  Evaluation of IASI-derived dust aerosol characteristics over the tropical belt , 2013 .

[61]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[62]  J. Agnew,et al.  Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation , 2013 .

[63]  S. Vandenbussche,et al.  Retrieval of desert dust aerosol vertical profiles from IASI measurements in the TIR atmospheric window , 2013 .

[64]  Didier Tanré,et al.  Aerosol retrieval experiments in the ESA Aerosol_cci project , 2013 .

[65]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[66]  S. Piketh,et al.  A seasonal trend of single scattering albedo in southern African biomass‐burning particles: Implications for satellite products and estimates of emissions for the world's largest biomass‐burning source , 2013 .

[67]  Andrew K. Heidinger,et al.  A global survey of the effect of cloud contamination on the aerosol optical thickness and its long‐term trend derived from operational AVHRR satellite observations , 2013 .

[68]  David M. Winker,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses , 2013 .

[69]  Lieven Clarisse,et al.  A unified approach to infrared aerosol remote sensing and type specification , 2013 .

[70]  Didier Tanré,et al.  Aerosol Remote Sensing , 2013 .

[71]  Jeffrey S. Reid,et al.  Critical evaluation of the MODIS Deep Blue aerosol optical depth product for data assimilation over North Africa , 2012 .

[72]  T. Eck,et al.  An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions , 2012 .

[73]  Brent N. Holben,et al.  Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS , 2012 .

[74]  W. Paul Menzel,et al.  MODIS Cloud-Top Property Refinements for Collection 6 , 2012 .

[75]  Hiren Jethva,et al.  Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies , 2012 .

[76]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[77]  Richard Siddans,et al.  Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions , 2012 .

[78]  Sietse O. Los,et al.  A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR , 2012 .

[79]  T. Holzer-Popp,et al.  Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI , 2011 .

[80]  Alexander Smirnov,et al.  Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals , 2011 .

[81]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[82]  Roy G. Grainger,et al.  Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields , 2010 .

[83]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[84]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[85]  J. Frerick,et al.  SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space , 2010 .

[86]  Roy G. Grainger,et al.  A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals , 2010 .

[87]  A. Heidinger,et al.  Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record , 2010 .

[88]  Philip Watts,et al.  Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory , 2010 .

[89]  Ramesh P. Singh,et al.  Optical Properties of Fine/Coarse Mode Aerosol Mixtures , 2010 .

[90]  Bryan Lawrence,et al.  The GRAPE aerosol retrieval algorithm , 2009 .

[91]  B. Lawrence,et al.  Validation of the GRAPE single view aerosol retrieval for ATSR-2 and insights into the long term global AOD trend , 2009 .

[92]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[93]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[94]  A. Kokhanovsky,et al.  Satellite Aerosol Remote Sensing Over Land , 2009 .

[95]  Lorraine Remer,et al.  A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[97]  A. Higurashi,et al.  Development of Cloud and Aerosol Retrieval Algorithms for ADEOS-II/GLI Mission , 2009 .

[98]  David J. Diner,et al.  Retrieval of aerosol properties over land using MISR observations , 2009 .

[99]  Marion Schroedter-Homscheidt,et al.  Improvements of synergetic aerosol retrieval for ENVISAT , 2008 .

[100]  J. Haywood,et al.  Aircraft measurements of biomass burning aerosol over West Africa during DABEX , 2008 .

[101]  R. L. Curier,et al.  Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm : Application to Western Europe , 2008 .

[102]  Richard A. Frey,et al.  Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 , 2008 .

[103]  J. Cuesta,et al.  ADM-Aeolus retrieval algorithms for aerosol and cloud products , 2008 .

[104]  Peter R. J. North,et al.  MERIS/AATSR synergy algorithms for cloud screening, aerosol retrieval and atmospheric correction , 2008 .

[105]  Ana Maria Silva,et al.  Some considerations about Ångström exponent distributions , 2007 .

[106]  B. Franz,et al.  Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. , 2007, Applied optics.

[107]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[108]  Piet Stammes,et al.  Simulation study of the aerosol information content in OMI spectral reflectance measurements , 2007 .

[109]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[110]  A. Bourassa,et al.  Stratospheric aerosol retrieval with optical spectrograph and infrared imaging system limb scatter measurements , 2007 .

[111]  Jeffrey S. Reid,et al.  MODIS aerosol product analysis for data assimilation: Assessment of over‐ocean level 2 aerosol optical thickness retrievals , 2006 .

[112]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[113]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[114]  Olga V. Kalashnikova,et al.  Ability of multiangle remote sensing observations to identify and distinguish mineral dust types : Optical models and retrievals of optically thick plumes : Quantifying the radiative and biogeochemical impacts of mineral dust , 2005 .

[115]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[116]  Roger A. Pielke,et al.  Regional comparison and assimilation of GOCART and MODIS aerosol optical depth across the eastern U.S. , 2004 .

[117]  Alain Chedin,et al.  Dust altitude and infrared optical depth from AIRS , 2004 .

[118]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[119]  J. Joiner,et al.  Mineral aerosol contamination of TIROS Operational Vertical Sounder (TOVS) temperature and moisture retrievals , 2003 .

[120]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description , 2002 .

[121]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[122]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[123]  A. Ignatov,et al.  Aerosol Retrievals from Individual Avhrr Channels: Ii. Quality Control, Probability Distribution Functions, Information Content, and Consistency Checks of Retrievals , 2001 .

[124]  Alexander Ignatov,et al.  Aerosol Retrievals from Individual AVHRR Channels. Part I: Retrieval Algorithm and Transition from Dave to 6S Radiative Transfer Model , 2002 .

[125]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[126]  W. Collins,et al.  Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX , 2001 .

[127]  Alexander Ignatov,et al.  Physical Basis, Premises, and Self-Consistency Checks of Aerosol Retrievals from TRMM VIRS , 2000 .

[128]  Alexander Ignatov,et al.  The lognormal distribution as a reference for reporting aerosol optical depth statistics; Empirical tests using multi‐year, multi‐site AERONET Sunphotometer data , 2000 .

[129]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[130]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[131]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[132]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[133]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[134]  Peter R. J. North,et al.  Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[135]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[136]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[137]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[138]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[139]  Bernard Pinty,et al.  Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[140]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[141]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[142]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[143]  Yoram J. Kaufman,et al.  Information on aerosol size distribution contained in solar reflected spectral radiances , 1996 .

[144]  H. Rahman,et al.  Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data , 1993 .

[145]  A. H. Murphy,et al.  Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient , 1988 .

[146]  A. Morel Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) , 1988 .

[147]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[148]  A. Dawid The Well-Calibrated Bayesian , 1982 .

[149]  M. McCormick,et al.  Satellite studies of the stratospheric aerosol , 1979 .

[150]  M. Griggs,et al.  Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. , 1975, Journal of the Air Pollution Control Association.

[151]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[152]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[153]  C. Cox Statistics of the sea surface derived from sun glitter , 1954 .