Variational quantum reinforcement learning via evolutionary optimization

Recent advance in classical reinforcement learning (RL) and quantum computation (QC) points to a promising direction of performing RL on a quantum computer. However, potential applications in quantum RL are limited by the number of qubits available in modern quantum devices. Here we present two frameworks of deep quantum RL tasks using a gradient-free evolution optimization: First, we apply the amplitude encoding scheme to the Cart-Pole problem, where we demonstrate the quantum advantage of parameter saving using the amplitude encoding; Second, we propose a hybrid framework where the quantum RL agents are equipped with a hybrid tensor network-variational quantum circuit (TN-VQC) architecture to handle inputs of dimensions exceeding the number of qubits. This allows us to perform quantum RL on the MiniGrid environment with 147-dimensional inputs. The hybrid TN-VQC architecture provides a natural way to perform efficient compression of the input dimension, enabling further quantum RL applications on noisy intermediate-scale quantum devices.

[1]  Demis Hassabis,et al.  Mastering Atari, Go, chess and shogi by planning with a learned model , 2019, Nature.

[2]  Ammar Belatreche,et al.  Towards Building A Facial Identification System Using Quantum Machine Learning Techniques , 2020, Journal of Advances in Information Technology.

[3]  Joongheon Kim,et al.  Introduction to Quantum Reinforcement Learning: Theory and PennyLane-based Implementation , 2021, 2021 International Conference on Information and Communication Technology Convergence (ICTC).

[4]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[5]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[6]  Owen Lockwood,et al.  Reinforcement Learning with Quantum Variational Circuits , 2020, AAAI 2020.

[7]  Sukin Sim,et al.  Noisy intermediate-scale quantum (NISQ) algorithms , 2021, Reviews of Modern Physics.

[8]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[9]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[10]  Nhat A. Nghiem,et al.  Unified framework for quantum classification , 2021, Physical Review Research.

[11]  Hendrik Poulsen Nautrup,et al.  Quantum enhancements for deep reinforcement learning in large spaces. , 2020 .

[12]  Shinjae Yoo,et al.  Federated Quantum Machine Learning , 2021, Entropy.

[13]  Ying-Jer Kao,et al.  An end-to-end trainable hybrid classical-quantum classifier , 2021, Mach. Learn. Sci. Technol..

[14]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[15]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[16]  Natural Evolutionary Strategies for Variational Quantum Computation , 2020, ArXiv.

[17]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[18]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[19]  C. Bauckhage,et al.  Gradient-free quantum optimization on NISQ devices , 2020, ArXiv.

[20]  Hans-J. Briegel,et al.  Advances in quantum reinforcement learning , 2017, 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[21]  Wojciech Zaremba,et al.  OpenAI Gym , 2016, ArXiv.

[22]  Jun Wang,et al.  Unsupervised Generative Modeling Using Matrix Product States , 2017, Physical Review X.

[23]  M. Devoret,et al.  Model-Free Quantum Control with Reinforcement Learning , 2021, Physical Review X.

[24]  Dacheng Tao,et al.  The Expressive Power of Parameterized Quantum Circuits , 2018, ArXiv.

[25]  J. Ignacio Cirac,et al.  Supervised learning with generalized tensor networks , 2018, ArXiv.

[26]  F. Verstraete,et al.  Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.

[27]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[28]  Chao Zhang,et al.  Hybrid Quantum-Classical Graph Convolutional Network , 2021, ArXiv.

[29]  Charles E. Hughes,et al.  Evolving plastic neural networks with novelty search , 2010, Adapt. Behav..

[30]  Gang Su,et al.  Generative Tensor Network Classification Model for Supervised Machine Learning , 2019, Physical Review B.

[31]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[32]  Chin-Hui Lee,et al.  Enhanced Adversarial Strategically-Timed Attacks Against Deep Reinforcement Learning , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[34]  Lei Wang,et al.  Tree Tensor Networks for Generative Modeling , 2019, Physical Review B.

[35]  K. Fujii,et al.  Learning temporal data with a variational quantum recurrent neural network , 2020, 2012.11242.

[36]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[37]  Naoki Yamamoto,et al.  Quantum semi-supervised generative adversarial network for enhanced data classification , 2020, Scientific Reports.

[38]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[39]  Samuel Albanie,et al.  Quantum Self-Supervised Learning , 2021, ArXiv.

[40]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[41]  Jack Hidary,et al.  TensorNetwork for Machine Learning , 2019, ArXiv.

[42]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[43]  D. Deng,et al.  Markovian Quantum Neuroevolution for Machine Learning , 2020, Physical Review Applied.

[44]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[45]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[46]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[47]  Shinjae Yoo,et al.  Quantum Long Short-Term Memory , 2020, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[48]  Kenneth O. Stanley,et al.  Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning , 2017, ArXiv.

[49]  Kenneth O. Stanley,et al.  Efficiently evolving programs through the search for novelty , 2010, GECCO '10.

[50]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[51]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[52]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[53]  Seth Lloyd,et al.  Quantum embeddings for machine learning , 2020 .

[54]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[55]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[56]  Gang Su,et al.  Machine learning by unitary tensor network of hierarchical tree structure , 2017, New Journal of Physics.

[57]  Nathan Killoran,et al.  Transfer learning in hybrid classical-quantum neural networks , 2020, Quantum.

[58]  Kenneth O. Stanley,et al.  Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents , 2017, NeurIPS.

[59]  Chao Zhang,et al.  Quantum Convolutional Neural Networks for High Energy Physics Data Analysis , 2020, Physical Review Research.

[60]  Risto Miikkulainen,et al.  Efficient evolution of neural network topologies , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[61]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[62]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[63]  Jens Eisert,et al.  Reinforcement learning decoders for fault-tolerant quantum computation , 2018, Mach. Learn. Sci. Technol..

[64]  Miron Livny,et al.  Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits , 2020, Journal of Physics G: Nuclear and Particle Physics.

[65]  Yao-Lung L. Fang,et al.  Quantum Architecture Search via Deep Reinforcement Learning , 2021, ArXiv.

[66]  Qiang Guan,et al.  A Hybrid System for Learning Classical Data in Quantum States , 2020, 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC).

[67]  J. Eisert Entanglement and tensor network states , 2013, 1308.3318.

[68]  Evolving Neural Networks through a Reverse Encoding Tree , 2020, 2020 IEEE Congress on Evolutionary Computation (CEC).

[69]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[70]  Ming Li,et al.  Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer , 2019, Nature Communications.

[71]  Walid Saad,et al.  Quantum Federated Learning with Quantum Data , 2021, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[72]  A. Skolik,et al.  Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning , 2021, 2103.15084.

[73]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[74]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[75]  O. Kyriienko,et al.  Generalized quantum circuit differentiation rules , 2021, Physical Review A.

[76]  Yi Ouyang,et al.  Causal Inference Q-Network: Toward Resilient Reinforcement Learning , 2021, ArXiv.

[77]  Mikko Möttönen,et al.  Transformation of quantum states using uniformly controlled rotations , 2004, Quantum Inf. Comput..

[78]  Hans-J. Briegel,et al.  Framework for learning agents in quantum environments , 2015, ArXiv.

[79]  J. Ignacio Cirac,et al.  From Probabilistic Graphical Models to Generalized Tensor Networks for Supervised Learning , 2018, IEEE Access.

[80]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[81]  Simon Marshall,et al.  Variational quantum policies for reinforcement learning , 2021, ArXiv.

[82]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[83]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[84]  E. Miles Stoudenmire,et al.  Learning relevant features of data with multi-scale tensor networks , 2017, ArXiv.

[85]  Shi-Ju Ran,et al.  Encoding of matrix product states into quantum circuits of one- and two-qubit gates , 2019, Physical Review A.

[86]  Ting Yu,et al.  Quantum unsupervised and supervised learning on superconducting processors , 2020, Quantum Inf. Comput..

[87]  Essam H. Houssein,et al.  Classification with Quantum Machine Learning: A Survey , 2020, ArXiv.

[88]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[89]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[90]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[91]  Chao-Han Huck Yang,et al.  Variational Quantum Circuits for Deep Reinforcement Learning , 2019, IEEE Access.

[92]  Annie E. Paine,et al.  Solving nonlinear differential equations with differentiable quantum circuits , 2020, 2011.10395.

[93]  Chin-Hui Lee,et al.  Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[94]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[95]  Shaojun Wu,et al.  Quantum reinforcement learning in continuous action space , 2020, ArXiv.

[96]  Sushma Jain,et al.  Matrix Product State–Based Quantum Classifier , 2019, Neural Computation.

[97]  Vincent E. Elfving,et al.  Quantum Quantile Mechanics: Solving Stochastic Differential Equations for Generating Time-Series , 2021, 2108.03190.

[98]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[99]  Andrew W. Cross,et al.  The IBM Q experience and QISKit open-source quantum computing software , 2018 .

[100]  Stefan Woerner,et al.  Quantum Generative Adversarial Networks for learning and loading random distributions , 2019, npj Quantum Information.

[101]  Daniel Guo,et al.  Agent57: Outperforming the Atari Human Benchmark , 2020, ICML.

[102]  Rémi Munos,et al.  Recurrent Experience Replay in Distributed Reinforcement Learning , 2018, ICLR.

[103]  Adrian Paschke,et al.  Variational Quanvolutional Neural Networks with enhanced image encoding , 2021, ArXiv.

[104]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..