Identifying delayed directional couplings with symbolic transfer entropy.

We propose a straightforward extension of symbolic transfer entropy to enable the investigation of delayed directional relationships between coupled dynamical systems from time series. Analyzing time series from chaotic model systems, we demonstrate the applicability and limitations of our approach. Our findings obtained from applying our method to infer delayed directed interactions in the human epileptic brain underline the importance of our approach for improving the construction of functional network structures from data.

[1]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[2]  J. Rogers Chaos , 1876 .

[3]  J. Kurths,et al.  Synchronization in Oscillatory Networks , 2007 .

[4]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[5]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[6]  W. J. Nowack Neocortical Dynamics and Human EEG Rhythms , 1995, Neurology.

[7]  B. M. Fulk MATH , 1992 .

[8]  W. Marsden I and J , 2012 .

[9]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[10]  G. Buzsáki Rhythms of the brain , 2006 .

[11]  D. Rand,et al.  Dynamical Systems and Turbulence, Warwick 1980 , 1981 .

[12]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[13]  Siamak Shahidi,et al.  BRAIN RES BULL , 2008 .

[14]  O. Sporns Networks of the Brain , 2010 .

[15]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[16]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .