A 'Sum of Squares' Theorem for Visibility Complexes

We present a new method to implement in constant amortized time the flip operation of the so-called Greedy Flip Algorithm, an optimal algorithm to compute the visibility complex of a collection of pairwise disjoint bounded convex sets of constant complexity (disks). The method uses simple data structures and only the left-turn predicate for disks; it relies, among other things, on a sum of squares like theorem for visibility complexes stated and proved in this paper. (The sum of squares theorem for a simple arrangement of lines states that the average value of the square of the number of vertices of a face of the arrangement is bounded by a constant.)

[1]  Joseph O'Rourke Computational geometry column 39 , 2000, SIGA.

[2]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[3]  Remco C. Veltkamp,et al.  A Robust Affine Invariant Similarity Measure Based on Visibility , 2000, EuroCG.

[4]  Donald E. Knuth,et al.  Axioms and Hulls , 1992, Lecture Notes in Computer Science.

[5]  Joseph O'Rourke,et al.  Vertex-edge pseudo-visibility graphs: characterization and recognition , 1997, SCG '97.

[6]  Günter Rote,et al.  Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Leonidas J. Guibas,et al.  Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..

[9]  Michel Pocchiola,et al.  Topologically sweeping visibility complexes via pseudotriangulations , 1996, Discret. Comput. Geom..

[10]  Bernard Chazelle,et al.  The power of geometric duality , 1985, BIT Comput. Sci. Sect..

[11]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[12]  Sergei Bespamyatnikh,et al.  An efficient algorithm for enumeration of triangulations , 2002 .

[13]  Pierre Angelier Algorithmique des graphes de visibilité , 2002 .

[14]  Peter McMullen,et al.  MODERN DEVELOPMENTS IN REGULAR POLYTOPES , 1994 .

[15]  W. Massey A basic course in algebraic topology , 1991 .

[16]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[17]  M. Sharir,et al.  On the sum of squares of cell complexities in hyperplane arrangements , 1994 .

[18]  Bettina Speckmann,et al.  Kinetic collision detection for simple polygons , 2000, SCG '00.

[19]  M Pocchiola,et al.  On polygonal covers , 1998 .

[20]  George McCarty Topology : an introduction with application to topological groups / George McCarty , 1967 .

[21]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[22]  Ileana Streinu,et al.  A combinatorial approach to planar non-colliding robot arm motion planning , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  David A. Forsyth,et al.  Interactive ray tracing with the visibility complex , 1999, Comput. Graph..

[24]  Michel Pocchiola,et al.  Pseudo-triangulations: theory and applications , 1996, SCG '96.

[25]  Michel Pocchiola,et al.  Minimal Tangent Visibility Graphs , 1996, Comput. Geom..

[26]  Frédo Durand,et al.  Fast and accurate hierarchical radiosity using global visibility , 1999, TOGS.

[27]  Günter Rote,et al.  Counting triangulations and pseudo-triangulations of wheels , 2001, CCCG.

[28]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[29]  Leonidas J. Guibas,et al.  Walking on an arrangement topologically , 1991, SCG '91.

[30]  James Abello,et al.  Visibility Graphs and Oriented Matroids , 1994, GD.

[31]  Tetsuo Asano,et al.  Visibility in the Plane , 2000, Handbook of Computational Geometry.

[32]  Bettina Speckmann,et al.  Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons , 2002, SCG '02.

[33]  B. Sturmfels Oriented Matroids , 1993 .

[34]  Subir Kumar Ghosh On Recognizing and Characterizing Visibility Graphs of Simple Polygons , 1988, SWAT.

[35]  Ileana Streinu,et al.  The vertex-edge visibility graph of a polygon , 1998, Comput. Geom..

[36]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[37]  Michael T. Goodrich,et al.  Dynamic Ray Shooting and Shortest Paths in Planar Subdivisions via Balanced Geodesic Triangulations , 1997, J. Algorithms.

[38]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[39]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[40]  Stéphane Rivière,et al.  Calculs de visibilité dans un environnement polygonal 2D. (Visibility computations in 2D polygonal scenes) , 1997 .

[41]  Ileana Streinu,et al.  Stretchability of star-like pseudo-visibility graphs , 1999, SCG '99.

[42]  Francisco Santos,et al.  Expansive Motions and the Polytope of Pointed Pseudo-Triangulations , 2002 .

[43]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[44]  Frédo Durand,et al.  Using the Visibility Complex for Radiosity Computation , 1996, WACG.

[45]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.