Non-monotonic double layers and electron two-stream instabilities resulting from intermittent ion acoustic wave growth

Transient characteristics of a current-carrying plasma subjected to ion acoustic instability are studied via Vlasov–Poisson simulations. After saturation of the ion acoustic instability, when a sufficient range of long-wavelength ion acoustic modes is considered, ion acoustic wave packets form and give rise to ion phase space holes. These ion holes grow in magnitude until asymmetric electron reflection, due to the current carrying plasma, results in a potential gradient across the hole known as a non-monotonic double layer. Downstream of the double layer, an electron two-stream instability is generated due to a depletion of forward-streaming electrons by reflection. This secondary instability initiates a plasma wave whose phase velocity is determined by the magnitude of the double layer potential. While the double layer potential depends on the ion mass for a given domain length, the phase velocity of the secondary wave is consistently observed to be greater than the ion acoustic speed. Implications for the presence of these transient phenomena are discussed in the context of experimental plume measurements of hollow cathode devices.

[1]  S. Tsikata,et al.  Cross-field electron diffusion due to the coupling of drift-driven microinstabilities. , 2020, Physical review. E.

[2]  Sarah E. Cusson,et al.  Non-classical electron transport in the cathode plume of a Hall effect thruster , 2020 .

[3]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[4]  K. Hara,et al.  Ion kinetics and nonlinear saturation of current-driven instabilities relevant to hollow cathode plasmas , 2019, Plasma Sources Science and Technology.

[5]  I. Mikellides,et al.  Hollow Cathode Simulations with a First-Principles Model of Ion-Acoustic Anomalous Resistivity , 2018, Journal of Propulsion and Power.

[6]  L. Garrigues,et al.  Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model , 2017 .

[7]  Shinatora Cho,et al.  Development of a hybrid particle-continuum kinetic method for Hall thruster discharge plasmas , 2016 .

[8]  M. Cowee,et al.  On the generation of double layers from ion- and electron-acoustic instabilities , 2016 .

[9]  G. Reeves,et al.  Electric field structures and waves at plasma boundaries in the inner magnetosphere , 2015 .

[10]  V. Fuka,et al.  PoisFFT - A free parallel fast Poisson solver , 2014, Appl. Math. Comput..

[11]  I. Mikellides,et al.  Numerical Simulations of the Partially Ionized Gas in a 100-A LaB6 Hollow Cathode , 2015, IEEE Transactions on Plasma Science.

[12]  K. Hara Development of Grid-Based Direct Kinetic Method and Hybrid Kinetic-Continuum Modeling of Hall Thruster Discharge Plasmas. , 2015 .

[13]  I. Mikellides,et al.  Ion acoustic turbulence in a 100-A LaB₆ hollow cathode. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Patrick H. Diamond,et al.  Nonlinear current-driven ion-acoustic instability driven by phase-space structures , 2014 .

[15]  Guo Jun,et al.  A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves , 2013 .

[16]  V. Angelopoulos,et al.  Observations of double layers in earth's plasma sheet. , 2009, Physical review letters.

[17]  M. Berthomier,et al.  Nonlinear electron acoustic structures generated on the high-potential side of a double layer , 2009 .

[18]  I. Mikellides,et al.  Wear Mechanisms in Electron Sources for Ion Propulsion, 2: Discharge Hollow Cathode , 2008 .

[19]  Dan M. Goebel,et al.  Evidence of nonclassical plasma transport in hollow cathodes for electric propulsion , 2007 .

[20]  J. Büchner,et al.  Anomalous resistivity of current-driven isothermal plasmas due to phase space structuring , 2006 .

[21]  I. Mikellides,et al.  Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region , 2005 .

[22]  A. Hamza On the development and evolution of nonlinear ion acoustic wave packets , 2005 .

[23]  J. F. Mckenzie,et al.  Compressive and rarefactive ion-acoustic solitons in bi-ion plasmas , 2004 .

[24]  R. Ergun,et al.  Formation of double layers and electron holes in a current-driven space plasma. , 2001, Physical review letters.

[25]  M. Goldman,et al.  Direct observation of localized parallel electric fields in a space plasma. , 2001, Physical review letters.

[26]  N. Singh Electron holes as a common feature of double‐layer‐Driven plasma waves , 2000 .

[27]  J. Han,et al.  Dynamics of Non-Monotonic Double Layers in Plasma , 1995 .

[28]  John D. Williams,et al.  An experimental investigation of hollow cathode-based plasma contactors , 1991 .

[29]  Paul J. Wilbur,et al.  High current hollow cathode phenomena , 1990 .

[30]  Gustafsson,et al.  Characteristics of solitary waves and weak double layers in the magnetospheric plasma. , 1988, Physical review letters.

[31]  T. H. Dupree,et al.  Growth of nonlinear intermittent fluctuations in linearly stable and unstable simulation plasma , 1986 .

[32]  T. H. Dupree Large amplitude ion holes , 1986 .

[33]  C. Barnes,et al.  Weak double layers in ion‐acoustic turbulence , 1985 .

[34]  Y. Saxena,et al.  Development of ion-acoustic double layers through ion-acoustic fluctuations , 1985 .

[35]  T. H. Dupree,et al.  Simulation of phase space hole growth and the development of intermittent plasma turbulence , 1985 .

[36]  R. Schunk,et al.  PLASMA RESPONSE TO THE INJECTION OF AN ELECTRON BEAM , 1984 .

[37]  N. Hershkowitz,et al.  Laboratory evidence for ion-acoustic-type double layers , 1984 .

[38]  G. Chanteur,et al.  Formation of ion‐acoustic double layers , 1983 .

[39]  M. Hudson,et al.  Solitary waves and double layers on auroral field lines , 1983 .

[40]  T. H. Dupree Growth of phase‐space density holes , 1983 .

[41]  M. Ashour‐Abdalla,et al.  Ion acoustic double layers in the presence of plasma source , 1982 .

[42]  N. Singh Double layer formation , 1982 .

[43]  A. Hasegawa,et al.  Existence of a negative potential solitary‐wave structure and formation of a double layer , 1982 .

[44]  H. Schamel Kinetic Theory of Phase Space Vortices and Double Layers , 1982 .

[45]  N. Hershkowitz,et al.  Weak double layers , 1981 .

[46]  T. Sato,et al.  Numerical simulations on ion acoustic double layers , 1981 .

[47]  O. Ishihara,et al.  Quasilinear mechanism of high-energy ion-tail formation in ion-acoustic instability , 1981 .

[48]  H. Schamel,et al.  Solitary plasma hole via ion‐vortex distribution , 1980 .

[49]  A. Wong,et al.  Formation of double layers , 1980 .

[50]  H. Thiemann,et al.  Electron velocity distribution function on the high potential side of a double layer , 1980 .

[51]  Tetsuya Sato,et al.  Ion acoustic double layers , 1980 .

[52]  S. Iizuka,et al.  Ion heating due to double-layer disruption in a plasma , 1980 .

[53]  S. Iizuka,et al.  Buneman Instability, Pierce Instability, and Double-Layer Formation in a Collisionless Plasma , 1979 .

[54]  L. Block A double layer review , 1978 .

[55]  N. A. Krall,et al.  Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems , 1977 .

[56]  O. Buneman,et al.  Localized structures and anomalous dc resistivity , 1977 .

[57]  A. Wong,et al.  Formation of potential double layers in plasmas , 1976 .