Tantalum oxide nanocoatings prepared by atomic layer and filtered cathodic arc deposition for corrosion protection of steel: Comparative surface and electrochemical analysis

Abstract A comparative study by Time-of-Flight Secondary Ions Mass Spectrometry and X-ray Photoelectron Spectroscopy, i – E polarization curves and Electrochemical Impedance Spectroscopy of the corrosion protection of low alloy steel by 50 nm thick tantalum oxide coatings prepared by low temperature Atomic Layer Deposition (ALD) and Filtered Cathodic Arc Deposition (FCAD) is reported. The data evidence the presence of a spurious oxide layer mostly consisting of iron grown by transient thermal oxidation at the ALD film/substrate interface in the initial stages of deposition and its suppression by pre-treatment in the FCAD process. Carbonaceous contamination (organic and carbidic) resulting from incomplete removal of the organic precursor is the major cause of the poorer sealing properties of the ALD film. No coating dissolution is demonstrated in neutral or acid 0.2 M NaCl solutions. In acid solution localized corrosion by pitting proceeds faster with the ALD than with the FCAD coating. The roles of the pre-existing channel defects exposing the substrate surface and of the spurious interfacial oxide promoting coating breakdown and/or delamination are emphasized.

[1]  Chien‐Chih Lee,et al.  Filter effects on the wear and corrosion behaviors of arc deposited (Ti,Al)N coatings for application on cold-work tool steel , 2008 .

[2]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[3]  A. Watanabe,et al.  Stoichiometry of tantalum oxide films prepared by KrF excimer laser-induced chemical vapor deposition , 1995 .

[4]  D. Briggs,et al.  High resolution XPS of organic polymers , 1992 .

[5]  E. Atanassova,et al.  XPS study of N2 annealing effect on thermal Ta2O5 layers on Si , 2004 .

[6]  Miin-Jang Chen,et al.  Improvement of oxidation resistance of copper by atomic layer deposition , 2012 .

[7]  M. Ritala,et al.  Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: Surface and electrochemical analysis , 2011 .

[8]  A. Lanzutti,et al.  Chemical and electrochemical characterization of hybrid PVD + ALD hard coatings on tool steel , 2009 .

[9]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[10]  P. Panjan,et al.  Growth Defects in PVD Hard Coatings , 2009, Recent Advances in Thin Films.

[11]  B. Wood,et al.  XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite. , 2006, Journal of colloid and interface science.

[12]  M. Graham,et al.  Sputter reduction of oxides by ion bombardment during Auger depth profile analysis , 1990 .

[13]  P. Sherwood,et al.  Gamma-Alumina (γ-Al2O3) by XPS , 1998 .

[14]  C. Shan,et al.  Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition , 2008 .

[15]  Chien‐Chih Lee,et al.  Analysis on the corrosion behavior of DC53 tool steel coated by Ti–Al–C–N films via filtered cathodic arc deposition , 2009 .

[16]  J. Wit,et al.  Corrosion of aluminium in acidic and neutral solutions , 1993 .

[17]  C. H. An,et al.  Ellipsometric Examination of Structure and Growth Rate of Metallorganic Chemical Vapor Deposited Ta2 O 5 Films on Si(100) , 1994 .

[18]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[19]  P. Marcus,et al.  XPS, time-of-flight-SIMS and polarization modulation IRRAS study of Cr2O3 thin film materials as anode for lithium ion battery , 2009 .

[20]  V. Macagno,et al.  Influence of the forming electrolyte on the electrical properties of tantalum and niobium oxide films: an EIS comparative study , 1998 .

[21]  Geoffrey B. Smith,et al.  Plasma deposition of tribological and optical thin film materials with a filtered cathodic arc source , 1999 .

[22]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[23]  M. Ritala,et al.  Corrosion Protection of Steel with Oxide Nanolaminates Grown by Atomic Layer Deposition , 2011 .

[24]  P. Marcus,et al.  XPS and STM Investigation of the Passive Film Formed on Cr(110) Single‐Crystal Surfaces , 1994 .

[25]  P. Günter,et al.  Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy , 1995 .

[26]  Mikko Ritala,et al.  Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC{sub 2}H{sub 5}){sub 5} and H{sub 2}O , 1995 .

[27]  P. Marcus,et al.  XPS, LEED and STM study of thin oxide films formed on Cr(110) , 2000 .

[28]  Se Stephen Potts,et al.  Ultra-Thin Aluminium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Corrosion Protection , 2011 .

[29]  P. Natishan,et al.  Ion beam assisted deposited tantalum oxide coatings on aluminum , 1996 .

[30]  M. Orazem,et al.  Erratum: The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions. A Global and Local Impedance Analysis [ J. Electrochem. Soc. , 154 , C99 (2007)] , 2007 .

[31]  M. Pisarek,et al.  Chromium and tantalum oxide nanocoatings prepared by filtered cathodic arc deposition for corrosion protection of carbon steel , 2012 .

[32]  A. Lanzutti,et al.  Chemical and electrochemical characterization of TiO2/Al2O3 atomic layer depositions on AZ-31 magnesium alloy , 2012, Journal of Coatings Technology and Research.

[33]  G. Jézéquel,et al.  Composition of natural oxide films on polycrystalline tantalum using XPS electron take‐off angle experiments , 1992 .

[34]  J. Galland,et al.  Electrochemical impedance of pits. Influence of the pit morphology , 1997 .

[35]  Y. C. Lee,et al.  Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. , 2011, ACS applied materials & interfaces.

[36]  E. Mccafferty Introduction to Corrosion Science , 2010 .

[37]  Mikko Ritala,et al.  Electrochemical and time-of-flight secondary ion mass spectrometry analysis of ultra-thin metal oxide (Al2O3 and Ta2O5) coatings deposited by atomic layer deposition on stainless steel , 2011 .

[38]  Olof Forsén,et al.  Atomic layer deposited thin films for corrosion protection , 1999 .

[39]  Homero Castaneda,et al.  Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS , 2010 .

[40]  P. Marcus,et al.  Hydroxylation of ultra-thin films of α-Cr2O3(0 0 0 1) formed on Cr(1 1 0) , 2001 .

[41]  T. Tan,et al.  Impedance spectra of the anodic dissolution of mild steel in sulfuric acid , 1996 .

[42]  I. L. Muller,et al.  Characterization of the film formed on iron in borate solution by electrochemical impedance spectroscopy , 2000 .

[43]  E. Atanassova,et al.  X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si , 1998 .

[44]  Guoan Zhang,et al.  On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production , 2009 .

[45]  J. C. Lestrade,et al.  Faradaic impedances and intermediates in electrochemical reactions , 1973 .

[46]  Vincent Vivier,et al.  The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions , 2007 .

[47]  F. Yano,et al.  The Study of Ultrathin Tantalum Oxide Films before and after Annealing with X-Ray Photoelectron Spectroscopy , 1994 .

[48]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .

[49]  Jingling Ma,et al.  The corrosion behaviour of Al–Zn–In–Mg–Ti alloy in NaCl solution , 2010 .

[50]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[51]  C. Shan,et al.  Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition , 2008 .

[52]  N. McIntyre,et al.  Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES™ , 2004 .

[53]  J. Castle,et al.  Factors influencing charge capacity of vanadium pentoxide thin films during lithium ion intercalation/deintercalation cycles , 2007 .

[54]  L. Fedrizzi,et al.  Protection of silver surfaces against tarnishing by means of alumina/titania-nanolayers , 2011 .

[55]  Da-yung Wang,et al.  Improvement of the interfacial integrity of (Ti,Al)N hard coatings deposited on high speed steel cutting tools , 1999 .

[56]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[57]  Guoan Zhang,et al.  Corrosion of X65 steel in CO2-saturated oilfield formation water in the absence and presence of acetic acid , 2009 .

[58]  Markku Ylilammi,et al.  Optical determination of the film thicknesses in multilayer thin film structures , 1993 .

[59]  A. Lanzutti,et al.  Corrosion protection of AISI 316 stainless steel by ALD alumina/titania nanometric coatings , 2011 .

[60]  P. Marcus,et al.  Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS , 1998 .

[61]  Ying Wang,et al.  Nanostructures and Nanomaterials: Synthesis, Properties and Applications , 2004 .

[62]  J. Walter,et al.  XPS study on pristine and intercalated tantalum carbosulfide , 2000 .

[63]  I. Boyd,et al.  Thin tantalum and tantalum oxide films grown by pulsed laser deposition , 2000 .

[64]  Da-yung Wang,et al.  Corrosion behavior of electroless nickel-coated AISI 304 stainless steel enhanced by titanium ion implantation , 2005 .

[65]  C. M. Abreu,et al.  Electrochemical behaviour of zinc-rich epoxy paints in 3% NaCl solution , 1996 .

[66]  W. Schreiner,et al.  The influence of carbon steel microstructure on corrosion layers , 2003 .

[67]  B. Tay,et al.  Review of metal oxide films deposited by filtered cathodic vacuum arc technique , 2006 .

[68]  M. Ritala,et al.  Failure mechanism of thin Al2O3 coatings grown by atomic layer deposition for corrosion protection of carbon steel , 2011 .

[69]  D. Landolt,et al.  Electrochemical Determination of the Porosity of Single and Duplex PVD Coatings of Titanium and Titanium Nitride on Brass , 1998 .

[70]  C. M. Rangel,et al.  Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH , 2002 .

[71]  Ian W. Boyd,et al.  Formation of silicon dioxide layers during UV annealing of tantalum pentoxide film , 2000 .