Automatic diagnosis of primary headaches by machine learning methods

Primary headaches are common disease of the modern society and it has high negative impact on the productivity and the life quality of the affected person. Unfortunately, the precise diagnosis of the headache type is hard and usually imprecise, thus methods of headache diagnosis are still the focus of intense research. The paper introduces the problem of the primary headache diagnosis and presents its current taxonomy. The considered problem is simplified into the three class classification task which is solved using advanced machine learning techniques. Experiments, carried out on the large dataset collected by authors, confirmed that computer decision support systems can achieve high recognition accuracy and therefore be a useful tool in an everyday physician practice. This is the starting point for the future research on automation of the primary headache diagnosis.

[1]  Robert Burduk,et al.  Classification error in Bayes multistage recognition task with fuzzy observations , 2010, Pattern Analysis and Applications.

[2]  Bartosz Krawczyk,et al.  Pattern recognition approach to classifying CYP 2C19 isoform , 2012 .

[3]  L. Stovner,et al.  Prevalence of Migraine and Non-Migrainous Headache—Head-HUNT, A Large Population-Based Study , 2000, Cephalalgia : an international journal of headache.

[4]  Michal Wozniak,et al.  Different decision tree induction strategies for a medical decision problem , 2012 .

[5]  R. Jensen Tension-type headache , 2001, Current treatment options in neurology.

[6]  E. MacGregor Menstruation, sex hormones, and migraine. , 1997, Neurologic clinics.

[7]  H. Keçeci,et al.  Epidemiological and Clinical Characteristics of Migraine in Sivas, Turkey , 2002, Headache.

[8]  Michal Wozniak Two-Stage Classifier for Diagnosis of Hypertension Type , 2006, ISBMDA.

[9]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[10]  Luis Rodríguez-Franco,et al.  Validez de los criterios de la Sociedad Internacional de Cefaleas ¿y de sus propuestas de modificación de 2002¿ en el diagnóstico de migraña y cefalea tensional , 2003 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Bartosz Krawczyk,et al.  Classifier Committee Based on Feature Selection Method for Obstructive Nephropathy Diagnosis , 2011 .

[13]  R. Lipton,et al.  Prevalence and Burden of Migraine in the United States: Data From the American Migraine Study II , 2001, Headache.

[14]  David G. Stork,et al.  Pattern Classification , 1973 .

[15]  José Manuel Benítez,et al.  Consistency measures for feature selection , 2008, Journal of Intelligent Information Systems.

[16]  D Bateman Neurological disorders: course and treatment. 2nd edition , 2003 .

[17]  Thomas Brandt,et al.  Neurological disorders : course and treatment , 1996 .

[18]  J. Olesen,et al.  Chapter 3 – Tension-Type Headache , 2003 .

[19]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[20]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[21]  P. Rieckmann,et al.  Health outcomes in multiple sclerosis , 2004, Current opinion in neurology.

[22]  R. Lipton,et al.  Epidemiology of tension-type headache. , 1998, JAMA.

[23]  P H M Pop,et al.  Epidemiological aspects of headache in a workplace setting and the impact on the economic loss , 2002, European journal of neurology.

[24]  R. Kaniecki Migraine and tension-type headache: An assessment of challenges in diagnosis , 2002, Neurology.

[25]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[26]  J. Olesen,et al.  Classification of primary headaches. , 2004, Neurology.

[27]  J. Olesen,et al.  Headache classification update 2004 , 2004, Current opinion in neurology.

[28]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[29]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[30]  A. Ducros,et al.  Acute headache in the emergency department. , 2010, Handbook of clinical neurology.