Conceptual energy and water recovery system for self-sustained nano membrane toilet

Highlights • Energy and water recovery system from human excreta is modelled in Aspen Plus.• The Nano Membrane Toilet is proven to be a self-sustained system.• Up to 87% of total amount of water fed to the system can be recovered.• Net power output of the entire system is similar to the USB port peak power (2–6 W).• The specific net power output varies between 23.1 and 69.2 Wh/kgsettledsolids.

[1]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[2]  Teuku Meurah Indra Mahlia,et al.  A review of available methods and development on energy storage; technology update , 2014 .

[3]  Mohammad Reza Alizadeh,et al.  Screw conveyors power and throughput analysis during horizontal handling of paddy grains. , 2010 .

[4]  R. C. Sastry,et al.  Biomass Gasification Processes in Downdraft Fixed Bed Reactors: A Review , 2011 .

[5]  C B Niwagaba,et al.  Selection of sustainable sanitation technologies for urban slums--a case of Bwaise III in Kampala, Uganda. , 2010, The Science of the total environment.

[6]  S. P. Akpabio World Health Organisation , 1983, British Dental Journal.

[7]  Comparison and Adaptation of Social Change Dynamics , 2010 .

[8]  Masoud Rokni,et al.  Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels , 2013 .

[9]  Ingwald Obernberger,et al.  Small-scale CHP Plant based on a 75 kWel Hermetic Eight Cylinder Stirling Engine for Biomass Fuels – Development, Technology and Operating Experiences , 2003 .

[10]  S. Dasappa,et al.  Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges , 2016 .

[11]  Britt Halvorsen,et al.  Simulation of Gasification of Livestock Manure with Aspen Plus , 2015 .

[12]  Mohammad Asadullah,et al.  Barriers of commercial power generation using biomass gasification gas: A review , 2014 .

[13]  Samir Afifi,et al.  Developing an Integrated Sustainable Sanitation System for Urban Areas: Gaza Strip Case study , 2015 .

[14]  B. Jefferson,et al.  The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology , 2015, Critical reviews in environmental science and technology.

[15]  Kanapathipillai Wignarajah,et al.  Simulated Human Feces for Testing Human Waste Processing Technologies in Space Systems , 2006 .

[16]  Rahel Künzle,et al.  Decision support for redesigning wastewater treatment technologies. , 2014, Environmental science & technology.

[17]  Anastasia Zabaniotou,et al.  Simulation of Olive Kernel Gasification in a Bubbling Fluidized Bed Pilot Scale Reactor , 2012 .

[18]  Alan D. Lopez,et al.  The Global Burden of Disease Study , 2003 .

[19]  T. Woudstra,et al.  System development and self-sustainability analysis for upgrading human waste to power , 2014 .

[20]  Ahmad Mohsenimanesh,et al.  Determination of Effective Factors on Power Requirement and Conveying Capacity of a Screw Conveyor under Three Paddy Grain Varieties , 2012, TheScientificWorldJournal.

[21]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[22]  Joseph A. Araoz,et al.  Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems , 2014 .

[23]  Raymond L. Huhnke,et al.  Characterization of Switchgrass, Cellulose, Hemicellulose and Lignin for Thermochemical Conversions , 2012 .

[24]  Kj Krzysztof Ptasinski,et al.  Exergetic evaluation of biomass gasification , 2007 .

[25]  F. Manz,et al.  24-h hydration status: parameters, epidemiology and recommendations , 2003, European Journal of Clinical Nutrition.

[26]  R. G. Tated,et al.  Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS , 2015, Clean Technologies and Environmental Policy.

[27]  Angkee Sripakagorn,et al.  Design and performance of a moderate temperature difference Stirling engine , 2011 .

[28]  Mokhtar Bidi,et al.  Optimization of powered Stirling heat engine with finite speed thermodynamics , 2016 .

[29]  Steffen Heidenreich,et al.  New concepts in biomass gasification , 2015 .

[30]  Sushil Adhikari,et al.  Effects of Temperature and Equivalence Ratio on Pine Syngas Primary Gases and Contaminants in a Bench-Scale Fluidized Bed Gasifier , 2014 .

[31]  A. Kolios,et al.  Energy recovery from human faeces via gasification: A thermodynamic equilibrium modelling approach , 2016, Energy conversion and management.

[32]  Rosangela Marchelli,et al.  EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), , 2010 .

[33]  A. Moisseytsev,et al.  A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature , 2013 .

[34]  W. A. Amos,et al.  Report on Biomass Drying Technology , 1999 .

[35]  F. A. F. Monhol,et al.  Cocurrent Combustion of Human Feces and Polyethylene Waste , 2015 .

[36]  Panagiotis Grammelis,et al.  Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite , 2003 .

[37]  Bernadette A. Thomas,et al.  Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[38]  D. F. Putnam Composition and concentrative properties of human urine , 1971 .

[39]  Efsa Publication,et al.  EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on Dietary Reference Values for protein , 2012 .

[40]  Alison Parker Membrane technology plays key role in waterless hygienic toilet , 2014 .

[41]  Freeman Ntuli,et al.  Simulation of Sugarcane Bagasse Gasification using Aspen Plus , 2013 .

[42]  Fathollah Pourfayaz,et al.  Thermodynamic Analysis and Multi Objective Optimization of Performance of Solar Dish Stirling Engine by the Centrality of Entransy and Entropy Generation , 2014 .

[43]  Ingwald Obernberger,et al.  Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels , 2003 .

[44]  Jan Pettersson,et al.  Human fertilizer and the productivity of farming households , 2013 .

[45]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[46]  Dawid P. Hanak,et al.  Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant , 2016 .

[47]  Efsa Panel on Dietetic Products Scientific Opinion on Dietary Reference Values for water , 2010 .

[48]  Wojciech Stanek,et al.  Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity , 2016 .

[49]  Afsin Gungor SIMULATION OF THE EFFECTS OF THE EQUIVALENCE RATIO ON HYDROGEN PRODUCTION IN FLUIDIZED BED BIOMASS , 2009 .

[50]  Y. Chi,et al.  Simulation of municipal solid waste gasification in two different types of fixed bed reactors , 2013 .

[51]  Brian Goldberg,et al.  Promoting green urban development in African cities : Kampala, Uganda - urban environmental profile , 2015 .

[52]  Somchai Wongwises,et al.  A review of solar-powered Stirling engines and low temperature differential Stirling engines , 2003 .