The Planetary Fourier Spectrometer (PFS) for the orbiter of the spacecraft Mars 96

Abstract The Planetary Fourier Spectrometer (PFS) is intended for the mission Mars 96. It covers a wave-length range of 1.25–5 and 6–45 μm with a spectral resolution of 2 cm −1 and a field of view (FOV) of 35 and 70 mrad, respectively. The instrument is a modified Michelson interferometer optimized for the study of the Martian atmosphere. Moreover, the PFS will provide information about the composition and properties of the Martian soil.

[1]  A. Banin,et al.  The nanophase iron mineral(s) in Mars soil. , 1993, Journal of geophysical research.

[2]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[3]  M. J. Persky A review of spaceborne infrared Fourier transform spectrometers for remote sensing , 1995 .

[4]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[5]  Robert B. Singer,et al.  High-resolution reflectance spectra of Mars in the 2.3-μm region: evidence for the mineral scapolite , 1990 .

[6]  H. Hirsch,et al.  Studies of Martian atmosphere and surface by the Planetary Rourier Spectrometer on board the Mars-94 mission , 1994, Other Conferences.

[7]  A. Dollfus,et al.  Soil texture and granulometry at the surface of Mars , 1993 .

[8]  E. C. Morris,et al.  The geology of the Viking lander 2 site , 1977 .

[9]  B. Conrath,et al.  Interferometer Experiment on Nimbus 3: Preliminary Results , 1969, Science.

[10]  A. Jurewicz,et al.  Numerical modelling of radiance of the presumed dust torus around Mars in the 0.350–1 μm spectral range , 1996 .

[11]  S. Erard,et al.  Spatial Variations in the Spectral Properties of Bright Regions on Mars , 1993 .

[12]  Michel Combes,et al.  Observations of water vapour anomaly above Tharsis volcanoes on Mars in the ISM (Phobos-2) experiment , 1994 .

[13]  S. Fonti,et al.  Radiation transfer modelling of the dust torus of phobos in view of the Mars9496 mission , 1995 .

[14]  K. Edgett,et al.  THE PARTICLE SIZE OF MARTIAN AEOLIAN DUNES , 1991 .

[15]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[16]  Angioletta Coradini,et al.  Infrared spectrometer PFS for the Mars 94 orbiter , 1996 .

[17]  Gabriele Arnold,et al.  Fourier transform spectroscopy in remote sensing of solid planetary surfaces , 1993 .

[18]  J. Bell,et al.  Observational evidence of crystalline iron oxides on Mars , 1990 .

[19]  V. M. Linkin,et al.  Infrared spectrometry of Venus from “Venera-15” and “Venera-16” , 1985 .

[20]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[21]  Giuseppe Piccioni,et al.  Optical definition of the Planetary Fourier Spectrometer (PFS): an FTIR spectrometer for the Mars '96 mission , 1994, Optics & Photonics.

[22]  S. Erard,et al.  Martian Aerosols: Near-Infrared Spectral Properties and Effects on the Observation of the Surface , 1994 .

[23]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[24]  C. Allen,et al.  Altered basaltic glass: A terrestrial analog to the soil of Mars , 1981 .

[25]  F. Angrilli,et al.  PFS, Planetary Fourier Spectrometer for the MARS 94 Mission. , 1993 .

[26]  K. Herr,et al.  Evidence About Hydrate and Solid Water in the Martian Surface From the , 1974 .

[27]  J. A. Decker,et al.  High altitude infrared spectroscopic evidence for bound water on Mars. , 1973 .

[28]  Kenneth L. Jones,et al.  The geology of the Viking Lander 1 site , 1977 .

[29]  J. Pollack,et al.  Spectroscopy of Mars from 2.04 to 2.44μm during the 1993 Opposition: Absolute Calibration and Atmospheric vs Mineralogic Origin of Narrow Absorption Features , 1994 .

[30]  R L Mancinelli,et al.  Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials. , 1995, Icarus.