Diagnosis of focal liver lesions from ultrasound using deep learning.

[1]  Ahmed Hosny,et al.  Artificial intelligence in radiology , 2018, Nature Reviews Cancer.

[2]  Osamu Abe,et al.  Deep learning with convolutional neural network in radiology , 2018, Japanese Journal of Radiology.

[3]  Christian Biemann,et al.  What do we need to build explainable AI systems for the medical domain? , 2017, ArXiv.

[4]  C. Langlotz,et al.  Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs. , 2017, Radiology.

[5]  C. Aubé,et al.  Liver fibrosis, cirrhosis, and cirrhosis-related nodules: Imaging diagnosis and surveillance. , 2017, Diagnostic and interventional imaging.

[6]  Bruce R. Rosen,et al.  Image reconstruction by domain-transform manifold learning , 2017, Nature.

[7]  Xiang Liu,et al.  Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification , 2017, Sensors.

[8]  Michael A. Bruno,et al.  Understanding and Confronting Our Mistakes: The Epidemiology of Error in Radiology and Strategies for Error Reduction. , 2015, Radiographics : a review publication of the Radiological Society of North America, Inc.

[9]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[10]  S. Ahn,et al.  Characterization of focal liver masses using acoustic radiation force impulse elastography. , 2013, World journal of gastroenterology.

[11]  Daniel L Rubin,et al.  Informatics in radiology: improving clinical work flow through an AIM database: a sample web-based lesion tracking application. , 2012, Radiographics : a review publication of the Radiological Society of North America, Inc.

[12]  Bruce I. Reiner,et al.  The Insidious Problem of Fatigue in Medical Imaging Practice , 2012, Journal of Digital Imaging.

[13]  Ernst J. Rummeny,et al.  Intra- and inter-observer variability in measurement of target lesions: implication on response evaluation according to RECIST 1.1 , 2012, Radiology and oncology.

[14]  A. Sundin,et al.  Interobserver and intraobserver variability in the response evaluation of cancer therapy according to RECIST and WHO-criteria , 2010, Acta oncologica.

[15]  Wendy Macdonald,et al.  The impact of job demands and workload on stress and fatigue , 2003 .

[16]  David M Gaba,et al.  Patient safety: fatigue among clinicians and the safety of patients. , 2002, The New England journal of medicine.

[17]  Geoffrey E. Hinton,et al.  Deep Learning , 2015 .