On the relationship between statistical distributions of defect size and fatigue life in 7050-T7451 thick plate and A356-T6 castings

The relationship between the distributions for the size of fatigue-initiating defects and fatigue life of 7050-T7451 thick plate and A356-T6 alloy castings reported previously in the literature were analyzed. Results showed that (i) the size of fatigue-initiating defects in all four datasets follow the Gumbel distribution, (ii) the fatigue life model based on the Paris-Erdogan law for crack propagation provides respectable fits to fatigue life data, and (iii) the statistical distribution for fatigue life based on the Gumbel distribution of defect size and the fatigue life model provides excellent fits to all datasets, (iv) this statistical distribution for fatigue life performs better than the lognormal and Weibull distributions commonly used to model variability in fatigue life of aluminum alloys.

[1]  Q. Wang,et al.  Prediction of Fatigue Performance in Aluminum Shape Castings Containing Defects , 2007 .

[2]  Sheng-Long Lee,et al.  Effects of beryllium on fatigue crack propagation of A357 alloys containing iron , 1996 .

[3]  Ganapati P. Patil,et al.  Statistical Distributions in Scientific Work , 1981 .

[4]  M. Tiryakioğlu On the size distribution of fracture-initiating defects in Al-and Mg-alloy castings , 2008 .

[5]  Y. Murakami,et al.  Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models and Statistical Implications , 1999 .

[6]  Benjamin Epstein,et al.  Elements of the Theory of Extreme Values , 1960 .

[7]  T. R. Wilshaw,et al.  Determination of Surface Crack Size Densities in Glass , 1971 .

[8]  M. Stephens,et al.  Characterizations and Goodness of Fit Tests , 1982 .

[9]  Y. Murakami,et al.  Effects of defects, inclusions and inhomogeneities on fatigue strength , 1994 .

[10]  Yukitaka Murakami,et al.  Instructions for a New Method of Inclusion Rating and Correlations with the Fatigue Limit , 1994 .

[11]  M. A. Przystupa,et al.  Microstructure based fatigue life predictions for thick plate 7050-T7451 airframe alloys , 1997 .

[12]  Y. Murakami,et al.  Effects of Small Defects and Nonmetallic Inclusions on the Fatigue Strength of Metals , 1989 .

[13]  Simon Barter,et al.  Interpreting fatigue test results using a probabilistic fracture approach , 2005 .

[14]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[15]  Lorrie Molent,et al.  An experimental evaluation of fatigue crack growth , 2005 .

[16]  Murat Tiryakioğlu,et al.  Statistical distributions for the size of fatigue-initiating defects in Al-7%Si-0.3%Mg alloy castings : A comparative study , 2008 .

[17]  S. Stanzl-Tschegg,et al.  Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys , 2003 .

[18]  Bruce A. Craig,et al.  Probabilistic method for predicting the variability in fatigue behavior of 7075-T6 aluminum , 1999 .

[19]  David R Poirier,et al.  Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy , 1999 .

[20]  B. Zettl,et al.  Endurance limit and threshold stress intensity of die cast magnesium and aluminium alloys at elevated temperatures , 2005 .

[21]  Effect of casting technique on fatigue properties of hot isostatically pressed Al-10Mg castings , 1996 .

[22]  Stefano Beretta,et al.  STATISTICAL ANALYSIS OF DEFECTS FOR FATIGUE STRENGTH PREDICTION AND QUALITY CONTROL OF MATERIALS , 1998 .

[23]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[24]  Trevor C. Lindley,et al.  Statistical modeling of microstructure and defect population effects on the fatigue performance of cast A356-T6 automotive components , 2006 .

[25]  C. Davidson,et al.  Oxide films, pores and the fatigue lives of cast aluminum alloys , 2006 .

[26]  A. S. Machin,et al.  The effect of solution heat-treatment time on the fatigue properties of an Al-Si-Mg casting alloy , 2002 .

[27]  Bjørn Skallerud,et al.  Fatigue life assessment of aluminum alloys with casting defects , 1993 .

[28]  J. T. Staley,et al.  The effect of hot isostatic pressing (HIP) on the fatigue life of A206-T71 aluminum castings , 2007 .

[29]  Peter D. Lee,et al.  Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys , 2003 .

[30]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[31]  Peter J. Laz,et al.  Fatigue life prediction from inclusion initiated cracks , 1998 .

[32]  D. Casellas,et al.  Fatigue variability in Al–Si cast alloys , 2005 .

[33]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[34]  N. R. Green,et al.  Influence of casting technique and hot isostatic pressing on the fatigue of an Al-7Si-Mg alloy , 2001 .

[35]  P. Juvonen EFFECTS OF NON-METALLIC INCLUSIONS ON FATIGUE PROPERTIES OF CALCIUM TREATED STEELS , 2004 .

[36]  M. Tiryakioğlu Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings , 2009 .

[37]  J. R. Griffiths,et al.  CASTING DEFECTS AND THE FATIGUE BEHAVIOUR OF AN ALUMINIUM CASTING ALLOY , 1990 .

[38]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[39]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[40]  B. M. Hillberry,et al.  Probabilistic Approach to Predicting Fatigue Lives of Corroded 2024-T3 , 1999 .

[41]  Samuel S. Shapiro,et al.  A Review of Distributional Testing Procedures and Development of a Censored Sample Distributional Test , 1981 .

[42]  M. Tiryakioğlu Pore size distributions in AM50 Mg alloy die castings , 2007 .

[43]  C. A. Johnson Fracture Statistics of Multiple Flaw Distributions , 1983 .

[44]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[45]  D. Apelian,et al.  Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects , 2001 .