Creative Telescoping for Holonomic Functions

The aim of this article is twofold: on the one hand it is intended to serve as a gentle introduction to the topic of creative telescoping, from a practical point of view; for this purpose its application to several problems is exemplified. On the other hand, this chapter has the flavour of a survey article: the developments in this area during the last two decades are sketched and a selection of references is compiled in order to highlight the impact of creative telescoping in numerous contexts.

[1]  Pierre Cartier,et al.  Démonstration «automatique» d'identités et fonctions hypergéométriques , 1992 .

[2]  Wolfram Koepf,et al.  Algorithms for m-Fold Hypergeometric Summation , 1995, J. Symb. Comput..

[3]  Christoph Koutschan,et al.  Zeilberger's holonomic ansatz for Pfaffians , 2012, ISSAC.

[4]  Fabrizio Caruso,et al.  A Macsyma implementation of Zeilberger's fast algorithm. , 1999 .

[5]  John E. Majewicz WZ-style certification and sister celine's technique for abel-type sums , 1996 .

[6]  Manuel Kauers,et al.  Telescopers for rational and algebraic functions via residues , 2012, ISSAC.

[7]  Manuel Kauers,et al.  Order-degree curves for hypergeometric creative telescoping , 2012, ISSAC.

[8]  Alfred J. van der Poorten,et al.  A Proof that Euler Missed... , 2000 .

[9]  Ulrich Langer,et al.  Numerical and symbolic scientific computing : progress and prospects , 2012 .

[10]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[11]  Wolfram Koepf,et al.  Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..

[12]  Christoph Koutschan,et al.  THE ITERATED INTEGRALS OF ln(1 + xn) , 2012 .

[13]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[14]  Diploma Thesis,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm for Proving q-Hypergeometric Identities , 1995 .

[15]  Christoph Koutschan,et al.  The integrals in Gradshteyn and Ryzhik. Part 18: Some automatic proofs , 2011 .

[16]  George E. Andrews,et al.  Plane partitions VI: Stembridge's TSPP theorem , 2005, Adv. Appl. Math..

[17]  Ziming Li,et al.  On the existence of telescopers for mixed hypergeometric terms , 2012, J. Symb. Comput..

[18]  Doron Zeilberger,et al.  The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..

[19]  Christoph Koutschan,et al.  Third order integrability conditions for homogeneous potentials of degree -1 , 2012 .

[20]  Manuel Kauers,et al.  Trading order for degree in creative telescoping , 2011, J. Symb. Comput..

[21]  Peter Paule,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .

[22]  Tom H. Koornwinder Identities of nonterminating series by Zeilberger's algorithm , 1998 .

[23]  Manuel Kauers,et al.  A non-holonomic systems approach to special function identities , 2009, ISSAC '09.

[24]  P. Cartier,et al.  Démonstration «automatique» d'identités et fonctions hypergéométriques [d'après D. Zeilberger] , 1992 .

[25]  Luis A. Medina,et al.  Gems in Experimental Mathematics , 2010 .

[26]  Manuel Kauers,et al.  The concrete tetrahedron , 2011, ISSAC '11.

[27]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[28]  Frédéric Chyzak,et al.  Fonctions holonomes en calcul formel , 1998 .

[29]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[30]  Doron Zeilberger,et al.  Three Recitations on Holonomic Systems and Hypergeometric Series , 1994, J. Symb. Comput..

[31]  Christoph Koutschan Lattice Green's Functions of the Higher-Dimensional Face-Centered Cubic Lattices , 2011, ArXiv.

[32]  Nobuki Takayama,et al.  An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.

[33]  Carsten Schneider,et al.  Hypergeometric Summation Techniques for High Order Finite Elements , 2006 .

[34]  A. Berkovich,et al.  A COMPUTER PROOF OF A POLYNOMIAL IDENTITY IMPLYING A PARTITION THEOREM OF G (cid:127) OLLNITZ , 2022 .

[35]  Doron Zeilberger,et al.  Proof of George Andrews’s and David Robbins’s q-TSPP conjecture , 2010, Proceedings of the National Academy of Sciences.

[36]  Shaoshi Chen,et al.  Residues and telescopers for bivariate rational functions , 2012, Adv. Appl. Math..

[37]  Veronika Pillwein,et al.  Sparsity optimized high order finite element functions for H(curl) on tetrahedra , 2013, Adv. Appl. Math..

[38]  I. N. Bernshtein The analytic continuation of generalized functions with respect to a parameter , 1972 .

[39]  Carsten Schneider,et al.  Computer Algebra in Quantum Field Theory , 2013, Texts & Monographs in Symbolic Computation.

[40]  Wolfram Koepf REDUCE package for the indefinite and definite summation , 1995, SIGS.

[41]  Thang T. Q. Lê,et al.  The colored Jones function is q-holonomic , 2003, math/0309214.

[42]  Axel Riese,et al.  qMultiSum--a package for proving q-hypergeometric multiple summation identities , 2003, J. Symb. Comput..

[43]  Doron Zeilberger The Holonomic Ansatz II. Automatic Discovery(!) And Proof(!!) of Holonomic Determinant Evaluations , 2007 .

[44]  Mark van Hoeij,et al.  Explicit formula for the generating series of diagonal 3D rook paths , 2011, ArXiv.

[45]  Carsten Schneider,et al.  Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions , 2013 .

[46]  Manuel Kauers,et al.  Automated Proofs for Some Stirling Number Identities , 2008, Electron. J. Comb..

[47]  Carsten Schneider,et al.  Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.

[48]  P. Slater A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities , 2013, 1301.6617.

[49]  Ziming Li,et al.  Complexity of creative telescoping for bivariate rational functions , 2010, ISSAC.

[50]  Wadim Zudilin An elementary proof of Apery's theorem , 2002 .

[51]  Victor H. Moll,et al.  A pretty binomial identity , 2012 .

[52]  Andries E. Brouwer,et al.  Small Integral Trees , 2008, Electron. J. Comb..

[53]  Lily Yen A Two-Line Algorithm for Provingq-Hypergeometric Identities , 1997 .

[54]  Mourad E. H. Ismail,et al.  Special functions, q-series, and related topics , 1997 .

[55]  M. Bergh,et al.  A PRIMER OF ALGEBRAIC D‐MODULES (London Mathematical Society Student Texts 33) , 1998 .

[56]  Lily Yen A Two-Line Algorithm for Proving Terminating Hypergeometric Identities , 1996 .

[57]  Alfred J. van der Poorten,et al.  A proof that Euler missed ... , 1979 .

[58]  Axel Riese Fine-Tuning Zeilberger’s Algorithm , 2001 .

[59]  Christoph Lehrenfeld,et al.  Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations , 2011, ArXiv.

[60]  R. Feynman Surely You''re Joking Mr , 1992 .

[61]  Éric Schost,et al.  Differential equations for algebraic functions , 2007, ISSAC '07.

[62]  Doron Zeilberger,et al.  Hypergeometric series acceleration via the WZ method , 1997, Electron. J. Comb..

[63]  Peter Paule,et al.  Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach. I , 2012, 1206.2071.

[64]  Qing-Hu Hou,et al.  A telescoping method for double summations , 2005, math/0504525.

[65]  Doron Zeilberger A fast algorithm for proving terminating hypergeometric identities , 2006, Discret. Math..

[66]  George E. Andrews,et al.  Some Questions Concerning Computer-Generated Proofs of a Binomial Double- Sum Identy , 1993, J. Symb. Comput..

[67]  A. Bostan,et al.  Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity , 2012, 1211.6031.

[68]  Xin-Ping Xu,et al.  Recurrence and Polya number of general one-dimensional random walks , 2010, 1010.2014.

[69]  Qing-Hu Hou,et al.  Proving hypergeometric identities by numerical verifications , 2008, J. Symb. Comput..

[70]  Christoph Koutschan,et al.  Eliminating Human Insight: An Algorithmic Proof of Stembridge's TSPP Theorem , 2009, ArXiv.

[71]  Sergei A. Abramov,et al.  A criterion for the applicability of Zeilberger's algorithm to rational functions , 2002, Discret. Math..

[72]  Kurt Wegschaider,et al.  Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .

[73]  Frédéric Chyzak Gröbner Bases and Applications: Gröbner Bases, Symbolic Summation and Symbolic Integration , 1998 .

[74]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[75]  Akalu Tefera MultInt, a MAPLE Package for Multiple Integration by the WZ Method , 2002, J. Symb. Comput..

[76]  S. C. Coutinho A primer of algebraic D-modules , 1995 .

[77]  Wadim Zudilin Apéry's theorem: thirty years after , 2009 .

[78]  Frank G. Garvan,et al.  Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics , 2011 .

[79]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[80]  Wolfram Koepf,et al.  Representations of orthogonal polynomials , 1997 .

[81]  Christoph Koutschan,et al.  Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach II , 2012, AADIOS.

[82]  Doron Zeilberger,et al.  Sharp upper bounds for the orders of the recurrences output by the Zeilberger and q-Zeilberger algorithms , 2005, J. Symb. Comput..

[83]  Xinyu Sun,et al.  THE NON-COMMUTATIVE A-POLYNOMIAL OF TWIST KNOTS , 2008, 0802.4074.

[84]  J. Ablinger,et al.  Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.

[85]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[86]  Peter Paule,et al.  Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..

[87]  Wolfram Koepf,et al.  Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .

[88]  Peter Paule,et al.  SYMBOLIC SUMMATION SOME RECENT DEVELOPMENTS , 1995 .

[89]  Helmut Prodinger Descendants in heap ordered trees or a triumph of computer algebra , 1996, Electron. J. Comb..

[90]  Christoph Koutschan,et al.  A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..

[91]  CHRISTOPH KOUTSCHAN,et al.  THE ITERATED INTEGRALS OF ln(1 + x) , 2010 .

[92]  S. A. Abramov,et al.  When does Zeilberger's algorithm succeed? , 2003, Adv. Appl. Math..

[93]  John Michael Rassias Geometry, Analysis and Mechanics , 1995 .

[94]  B. Buchberger,et al.  Gröbner bases and applications , 1998 .

[95]  Christoph Koutschan,et al.  Advanced Computer Algebra for Determinants , 2011, ArXiv.

[96]  Christoph Koutschan,et al.  Advanced applications of the holonomic systems approach , 2010, ACCA.

[97]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[98]  Volker Strehl,et al.  Binomial identities - combinatorial and algorithmic aspects , 1994, Discret. Math..

[99]  Carsten Schneider,et al.  Hypergeometric Summation Algorithms for High-order Finite Elements , 2006, Computing.

[100]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[101]  T. Amdeberhan The integrals in Gradshteyn and Ryzhik , 2010 .

[102]  Manuel Kauers,et al.  The Holonomic Toolkit , 2013 .

[103]  Veronika Pillwein,et al.  Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials , 2007, Computing.

[104]  Doron Zeilberger,et al.  A WZ proof of Ramanujan's Formula for Pi , 1993 .

[105]  Christoph Koutschan,et al.  Irreducibility of q-difference operators and the knot 7_4 , 2012, ArXiv.

[106]  Wan Jing,et al.  Recurrence and Pólya Number of General One-Dimensional Random Walks , 2011 .

[107]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[108]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[109]  万晶,et al.  Recurrence and Polya Number of General One-Dimensional Random Walks , 2011 .

[110]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[111]  Russell Lyons,et al.  A Computer Proof of a Series Evaluation in Terms of Harmonic Numbers , 2002, Applicable Algebra in Engineering, Communication and Computing.

[112]  Alin Bostan,et al.  Creative telescoping for rational functions using the griffiths: dwork method , 2013, ISSAC '13.

[113]  Ziming Li,et al.  Hermite reduction and creative telescoping for hyperexponential functions , 2013, ISSAC '13.

[114]  Doron Zeilberger,et al.  Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory , 2006, Adv. Appl. Math..

[115]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[116]  Jeus Guillera,et al.  Generators of some Ramanujan formulas , 2006, 1104.0392.

[117]  G. T. Jones ‘Surely You're Joking, Mr Feynman!’ Adventures of a Curious Character , 1985 .

[118]  Manuel Kauers,et al.  Summation algorithms for Stirling number identities , 2007, J. Symb. Comput..

[119]  W. Zudilin An Apery-like Difference Equation for Catalan's Constant , 2003, Electron. J. Comb..