暂无分享,去创建一个
[1] Pierre Cartier,et al. Démonstration «automatique» d'identités et fonctions hypergéométriques , 1992 .
[2] Wolfram Koepf,et al. Algorithms for m-Fold Hypergeometric Summation , 1995, J. Symb. Comput..
[3] Christoph Koutschan,et al. Zeilberger's holonomic ansatz for Pfaffians , 2012, ISSAC.
[4] Fabrizio Caruso,et al. A Macsyma implementation of Zeilberger's fast algorithm. , 1999 .
[5] John E. Majewicz. WZ-style certification and sister celine's technique for abel-type sums , 1996 .
[6] Manuel Kauers,et al. Telescopers for rational and algebraic functions via residues , 2012, ISSAC.
[7] Manuel Kauers,et al. Order-degree curves for hypergeometric creative telescoping , 2012, ISSAC.
[8] Alfred J. van der Poorten,et al. A Proof that Euler Missed... , 2000 .
[9] Ulrich Langer,et al. Numerical and symbolic scientific computing : progress and prospects , 2012 .
[10] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[11] Wolfram Koepf,et al. Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..
[12] Christoph Koutschan,et al. THE ITERATED INTEGRALS OF ln(1 + xn) , 2012 .
[13] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..
[14] Diploma Thesis,et al. A Mathematica q-Analogue of Zeilberger's Algorithm for Proving q-Hypergeometric Identities , 1995 .
[15] Christoph Koutschan,et al. The integrals in Gradshteyn and Ryzhik. Part 18: Some automatic proofs , 2011 .
[16] George E. Andrews,et al. Plane partitions VI: Stembridge's TSPP theorem , 2005, Adv. Appl. Math..
[17] Ziming Li,et al. On the existence of telescopers for mixed hypergeometric terms , 2012, J. Symb. Comput..
[18] Doron Zeilberger,et al. The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..
[19] Christoph Koutschan,et al. Third order integrability conditions for homogeneous potentials of degree -1 , 2012 .
[20] Manuel Kauers,et al. Trading order for degree in creative telescoping , 2011, J. Symb. Comput..
[21] Peter Paule,et al. A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .
[22] Tom H. Koornwinder. Identities of nonterminating series by Zeilberger's algorithm , 1998 .
[23] Manuel Kauers,et al. A non-holonomic systems approach to special function identities , 2009, ISSAC '09.
[24] P. Cartier,et al. Démonstration «automatique» d'identités et fonctions hypergéométriques [d'après D. Zeilberger] , 1992 .
[25] Luis A. Medina,et al. Gems in Experimental Mathematics , 2010 .
[26] Manuel Kauers,et al. The concrete tetrahedron , 2011, ISSAC '11.
[27] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[28] Frédéric Chyzak,et al. Fonctions holonomes en calcul formel , 1998 .
[29] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[30] Doron Zeilberger,et al. Three Recitations on Holonomic Systems and Hypergeometric Series , 1994, J. Symb. Comput..
[31] Christoph Koutschan. Lattice Green's Functions of the Higher-Dimensional Face-Centered Cubic Lattices , 2011, ArXiv.
[32] Nobuki Takayama,et al. An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.
[33] Carsten Schneider,et al. Hypergeometric Summation Techniques for High Order Finite Elements , 2006 .
[34] A. Berkovich,et al. A COMPUTER PROOF OF A POLYNOMIAL IDENTITY IMPLYING A PARTITION THEOREM OF G (cid:127) OLLNITZ , 2022 .
[35] Doron Zeilberger,et al. Proof of George Andrews’s and David Robbins’s q-TSPP conjecture , 2010, Proceedings of the National Academy of Sciences.
[36] Shaoshi Chen,et al. Residues and telescopers for bivariate rational functions , 2012, Adv. Appl. Math..
[37] Veronika Pillwein,et al. Sparsity optimized high order finite element functions for H(curl) on tetrahedra , 2013, Adv. Appl. Math..
[38] I. N. Bernshtein. The analytic continuation of generalized functions with respect to a parameter , 1972 .
[39] Carsten Schneider,et al. Computer Algebra in Quantum Field Theory , 2013, Texts & Monographs in Symbolic Computation.
[40] Wolfram Koepf. REDUCE package for the indefinite and definite summation , 1995, SIGS.
[41] Thang T. Q. Lê,et al. The colored Jones function is q-holonomic , 2003, math/0309214.
[42] Axel Riese,et al. qMultiSum--a package for proving q-hypergeometric multiple summation identities , 2003, J. Symb. Comput..
[43] Doron Zeilberger. The Holonomic Ansatz II. Automatic Discovery(!) And Proof(!!) of Holonomic Determinant Evaluations , 2007 .
[44] Mark van Hoeij,et al. Explicit formula for the generating series of diagonal 3D rook paths , 2011, ArXiv.
[45] Carsten Schneider,et al. Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions , 2013 .
[46] Manuel Kauers,et al. Automated Proofs for Some Stirling Number Identities , 2008, Electron. J. Comb..
[47] Carsten Schneider,et al. Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.
[48] P. Slater. A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities , 2013, 1301.6617.
[49] Ziming Li,et al. Complexity of creative telescoping for bivariate rational functions , 2010, ISSAC.
[50] Wadim Zudilin. An elementary proof of Apery's theorem , 2002 .
[51] Victor H. Moll,et al. A pretty binomial identity , 2012 .
[52] Andries E. Brouwer,et al. Small Integral Trees , 2008, Electron. J. Comb..
[53] Lily Yen. A Two-Line Algorithm for Provingq-Hypergeometric Identities , 1997 .
[54] Mourad E. H. Ismail,et al. Special functions, q-series, and related topics , 1997 .
[55] M. Bergh,et al. A PRIMER OF ALGEBRAIC D‐MODULES (London Mathematical Society Student Texts 33) , 1998 .
[56] Lily Yen. A Two-Line Algorithm for Proving Terminating Hypergeometric Identities , 1996 .
[57] Alfred J. van der Poorten,et al. A proof that Euler missed ... , 1979 .
[58] Axel Riese. Fine-Tuning Zeilberger’s Algorithm , 2001 .
[59] Christoph Lehrenfeld,et al. Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations , 2011, ArXiv.
[60] R. Feynman. Surely You''re Joking Mr , 1992 .
[61] Éric Schost,et al. Differential equations for algebraic functions , 2007, ISSAC '07.
[62] Doron Zeilberger,et al. Hypergeometric series acceleration via the WZ method , 1997, Electron. J. Comb..
[63] Peter Paule,et al. Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach. I , 2012, 1206.2071.
[64] Qing-Hu Hou,et al. A telescoping method for double summations , 2005, math/0504525.
[65] Doron Zeilberger. A fast algorithm for proving terminating hypergeometric identities , 2006, Discret. Math..
[66] George E. Andrews,et al. Some Questions Concerning Computer-Generated Proofs of a Binomial Double- Sum Identy , 1993, J. Symb. Comput..
[67] A. Bostan,et al. Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity , 2012, 1211.6031.
[68] Xin-Ping Xu,et al. Recurrence and Polya number of general one-dimensional random walks , 2010, 1010.2014.
[69] Qing-Hu Hou,et al. Proving hypergeometric identities by numerical verifications , 2008, J. Symb. Comput..
[70] Christoph Koutschan,et al. Eliminating Human Insight: An Algorithmic Proof of Stembridge's TSPP Theorem , 2009, ArXiv.
[71] Sergei A. Abramov,et al. A criterion for the applicability of Zeilberger's algorithm to rational functions , 2002, Discret. Math..
[72] Kurt Wegschaider,et al. Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .
[73] Frédéric Chyzak. Gröbner Bases and Applications: Gröbner Bases, Symbolic Summation and Symbolic Integration , 1998 .
[74] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[75] Akalu Tefera. MultInt, a MAPLE Package for Multiple Integration by the WZ Method , 2002, J. Symb. Comput..
[76] S. C. Coutinho. A primer of algebraic D-modules , 1995 .
[77] Wadim Zudilin. Apéry's theorem: thirty years after , 2009 .
[78] Frank G. Garvan,et al. Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics , 2011 .
[79] Tom H. Koornwinder,et al. On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .
[80] Wolfram Koepf,et al. Representations of orthogonal polynomials , 1997 .
[81] Christoph Koutschan,et al. Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach II , 2012, AADIOS.
[82] Doron Zeilberger,et al. Sharp upper bounds for the orders of the recurrences output by the Zeilberger and q-Zeilberger algorithms , 2005, J. Symb. Comput..
[83] Xinyu Sun,et al. THE NON-COMMUTATIVE A-POLYNOMIAL OF TWIST KNOTS , 2008, 0802.4074.
[84] J. Ablinger,et al. Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.
[85] O. Ore. Theory of Non-Commutative Polynomials , 1933 .
[86] Peter Paule,et al. Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..
[87] Wolfram Koepf,et al. Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .
[88] Peter Paule,et al. SYMBOLIC SUMMATION SOME RECENT DEVELOPMENTS , 1995 .
[89] Helmut Prodinger. Descendants in heap ordered trees or a triumph of computer algebra , 1996, Electron. J. Comb..
[90] Christoph Koutschan,et al. A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..
[91] CHRISTOPH KOUTSCHAN,et al. THE ITERATED INTEGRALS OF ln(1 + x) , 2010 .
[92] S. A. Abramov,et al. When does Zeilberger's algorithm succeed? , 2003, Adv. Appl. Math..
[93] John Michael Rassias. Geometry, Analysis and Mechanics , 1995 .
[94] B. Buchberger,et al. Gröbner bases and applications , 1998 .
[95] Christoph Koutschan,et al. Advanced Computer Algebra for Determinants , 2011, ArXiv.
[96] Christoph Koutschan,et al. Advanced applications of the holonomic systems approach , 2010, ACCA.
[97] Peter Paule,et al. A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..
[98] Volker Strehl,et al. Binomial identities - combinatorial and algorithmic aspects , 1994, Discret. Math..
[99] Carsten Schneider,et al. Hypergeometric Summation Algorithms for High-order Finite Elements , 2006, Computing.
[100] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[101] T. Amdeberhan. The integrals in Gradshteyn and Ryzhik , 2010 .
[102] Manuel Kauers,et al. The Holonomic Toolkit , 2013 .
[103] Veronika Pillwein,et al. Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials , 2007, Computing.
[104] Doron Zeilberger,et al. A WZ proof of Ramanujan's Formula for Pi , 1993 .
[105] Christoph Koutschan,et al. Irreducibility of q-difference operators and the knot 7_4 , 2012, ArXiv.
[106] Wan Jing,et al. Recurrence and Pólya Number of General One-Dimensional Random Walks , 2011 .
[107] Donald E. Knuth. The Sandwich Theorem , 1994, Electron. J. Comb..
[108] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[109] 万晶,et al. Recurrence and Polya Number of General One-Dimensional Random Walks , 2011 .
[110] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[111] Russell Lyons,et al. A Computer Proof of a Series Evaluation in Terms of Harmonic Numbers , 2002, Applicable Algebra in Engineering, Communication and Computing.
[112] Alin Bostan,et al. Creative telescoping for rational functions using the griffiths: dwork method , 2013, ISSAC '13.
[113] Ziming Li,et al. Hermite reduction and creative telescoping for hyperexponential functions , 2013, ISSAC '13.
[114] Doron Zeilberger,et al. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory , 2006, Adv. Appl. Math..
[115] Doron Zeilberger,et al. A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..
[116] Jeus Guillera,et al. Generators of some Ramanujan formulas , 2006, 1104.0392.
[117] G. T. Jones. ‘Surely You're Joking, Mr Feynman!’ Adventures of a Curious Character , 1985 .
[118] Manuel Kauers,et al. Summation algorithms for Stirling number identities , 2007, J. Symb. Comput..
[119] W. Zudilin. An Apery-like Difference Equation for Catalan's Constant , 2003, Electron. J. Comb..