Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes

We describe in detail the manufacturing procedures for selectively closing holes in photonics crystal fibers and their infiltration with different liquids. We apply our method to create a large mode area liquid-filled photonic crystal fiber which consists of 19 liquid strands. By changing the mixing ratio between toluene and ethanol and by varying the temperature, we show continuous tuning from isolated to coupled behavior of the spatial mode profile. This demonstrates the versatility of selectively closed liquid-filled photonic crystal fibers for future photonic devices. Filling with nonlinear liquids, gases, metals, liquid crystals, low melting compound glasses, or quantum dots is possible, and spatial as well as temporal engineering of linear and nonlinear optical properties will become feasible, which should allow the observation of spatiotemporal solitons.

[1]  Markus A. Schmidt,et al.  Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires , 2007, 0711.4553.

[2]  Jacob Riis Folkenberg,et al.  Modal cutoff and the V parameter in photonic crystal fibers. , 2003, Optics letters.

[3]  Benjamin J. Eggleton,et al.  Ultra-sensitive photonic crystal fiber refractive index sensor , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[4]  S. Arismar Cerqueira,et al.  Recent progress and novel applications of photonic crystal fibers , 2010 .

[5]  Juan Kang,et al.  A proposal of a novel polarizer based on a partial liquid-filled hollow-core photonic bandgap fiber , 2011 .

[6]  T. Birks,et al.  Shape of fiber tapers , 1992 .

[7]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[8]  Thomas Graf,et al.  Very-large-mode-area, single-mode multicore fiber. , 2009, Optics letters.

[9]  Ole Bang,et al.  Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers. , 2007, Optics express.

[10]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[11]  B. Eggleton,et al.  Fluid-Filled Solid-Core Photonic Bandgap Fibers , 2009, Journal of Lightwave Technology.

[12]  Limin Xiao,et al.  Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. , 2005, Optics express.

[13]  M. Midrio,et al.  The space filling mode of holey fibers: an analytical vectorial solution , 2000, Journal of Lightwave Technology.

[14]  Hyun-Woo Lee,et al.  Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber , 2008 .

[15]  Y. Kivshar,et al.  Spatiotemporal control of light by Bloch-mode dispersion in multi-core fibers. , 2008, Optics express.

[16]  P. Steinvurzel,et al.  Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers. , 2005, Optics letters.

[17]  A. Samoc,et al.  Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared , 2003 .

[18]  B. Eggleton,et al.  Tapered photonic crystal fibers. , 2004, Optics express.

[19]  Noel Healy,et al.  Selective Semiconductor Filling of Microstructured Optical Fibers , 2011, Journal of Lightwave Technology.

[20]  Robert S. Windeler,et al.  Integrated all-fiber variable attenuator based on hybrid microstructure fiber , 2001 .

[21]  S. Leon-Saval,et al.  All-fiber anamorphic core-shape transitions. , 2006, Optics letters.

[22]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[23]  Xinyong Dong,et al.  High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. , 2011, Optics letters.

[24]  Tingting Han,et al.  Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor. , 2010, Optics letters.

[25]  P. Russell Photonic Crystal Fibers , 2003, Science.

[26]  Thomas Wriedt,et al.  Refractive-index measurements in the near-IR using an Abbe refractometer , 1997 .

[27]  B J Eggleton,et al.  Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. , 2010, Optics express.

[28]  B. Eggleton,et al.  Tunable microfluidic optical fiber gratings , 2003 .

[29]  A Bjarklev,et al.  Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers. , 2004, Optics express.

[30]  A. Tünnermann,et al.  Three-dimensional light bullets in arrays of waveguides. , 2010, Physical review letters.

[31]  Y. Silberberg Collapse of optical pulses. , 1990, Optics letters.

[32]  Lothar Wondraczek,et al.  Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers. , 2011, Optics letters.

[33]  Chin-Ping Yu,et al.  Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers , 2010 .

[34]  Wilfried Heller,et al.  Remarks on Refractive Index Mixture Rules , 1965 .

[35]  M. Schmidt,et al.  Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel. , 2011, Optics express.

[36]  E. M. dos Santos,et al.  Supercontinuum generation in a water-core photonic crystal fiber. , 2008, Optics express.

[37]  Yanyi Huang,et al.  Fabrication of functional microstructured optical fibers through a selective-filling technique , 2004 .

[38]  W. Margulis,et al.  A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid. , 2010, Optics express.

[39]  H. Giessen,et al.  Generalized retarded response of nonlinear media and its influence on soliton dynamics. , 2011, Optics express.

[40]  Selective opening of airholes in photonic crystal fiber. , 2010, Optics letters.

[41]  Seth R. Marder,et al.  Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication , 1999, Nature.

[42]  R. Schuhmann,et al.  Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model. , 2010, Optics express.

[43]  Philippe Delaye,et al.  High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber. , 2007, Optics letters.

[44]  Harald Giessen,et al.  Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. , 2006, Optics express.

[45]  M. Schmidt,et al.  Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. , 2011, Optics express.

[46]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[47]  Ying Wang,et al.  Femtosecond laser-assisted selective infiltration of microstructured optical fibers. , 2010, Optics express.

[48]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[49]  M. K. Garbos,et al.  Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber. , 2011, Optics letters.

[50]  Anders Bjarklev,et al.  Selective filling of Photonic Crystal Fibres , 2005 .

[51]  H. Giessen,et al.  Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses , 2003 .

[52]  D. Richardson,et al.  Developing holey fibres for evanescent field devices , 1999 .

[53]  U. Griebner,et al.  Two-octave supercontinuum generation in a water-filled photonic crystal fiber. , 2010, Optics express.

[54]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[55]  Feng Zhang,et al.  Microstructured Optical Fibers as High-Pressure Microfluidic Reactors , 2006, Science.

[56]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .