Rheological Properties of Thermoplastic Polymers with Dissolved Gases for Foaming Applications

Understanding the concept of rheology in polymer melts with dissolved gases like CO2 is crucial in development of high quality polymer foams which are commonly manufactured by foam extrusion processes. The crystallization and rheological properties of the melt are significantly affected by the dissolved gas, which acts as a blowing agent and at the same time as a plasticizer. Moreover, the rheological properties of gas-loaded polymer melts influence on the efficient design of extrusion dies toward production of popular homogenous lightweight foams. This chapter will discuss common methods to measure these rheological properties with the example of a long-chain branched Polypropylene as a case study. To take into account the role of crystallization behavior under gas-loading into the process design, we describe a method to measure both rheology and crystallization in one experimental setup.

[1]  V. Altstädt,et al.  Rheological behaviour of a high-melt-strength polypropylene at elevated pressure and gas loading for foaming purposes , 2017, Rheologica Acta.

[2]  V. Altstädt,et al.  Rheological and crystallisation behaviour of high melt strength polypropylene under gas-loading , 2014 .

[3]  P. Ferkl,et al.  Heat transfer in one-dimensional micro- and nano-cellular foams , 2013 .

[4]  U. A. Handge,et al.  Viscoelastic properties of solutions of polystyrene melts and carbon dioxide: Analysis of a transient shear rheology approach , 2012 .

[5]  W. Yuan,et al.  Foaming of linear isotactic polypropylene based on its non-isothermal crystallization behaviors under compressed CO2 , 2011 .

[6]  M. Stommel,et al.  FEM zur Berechnung von Kunststoff- und Elastomerbauteilen , 2011 .

[7]  H. Münstedt Rheological properties and molecular structure of polymer melts , 2011 .

[8]  Chul Park,et al.  Determination of Solubilities of CO2 in Linear and Branched Polypropylene Using a Magnetic Suspension Balance and a PVT Apparatus , 2010 .

[9]  Chul B. Park,et al.  Planar extensional flow resistance of a foaming plastic , 2010 .

[10]  C. Park,et al.  Effects of Branching on the Pressure−Volume−Temperature Behaviors of PP/CO2 Solutions , 2009 .

[11]  L. J. Lee,et al.  Shear Viscosity of CO2-Plasticized Polystyrene Under High Static Pressures , 2009 .

[12]  I. Hénaut,et al.  Rheological Behavior of Foamy Oils , 2009 .

[13]  Chul B. Park,et al.  Planar Extensional Viscosity of Polystyrene and Polystyrene/CO2 Solution , 2008 .

[14]  L. Catherine Brinson,et al.  Polymer Engineering Science and Viscoelasticity , 2008 .

[15]  Chul B. Park,et al.  The rheological and physical properties of linear and branched polypropylene blends , 2007 .

[16]  F. Stadler,et al.  Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows , 2007 .

[17]  C. Fonteix,et al.  Modeling of the rheological behavior of polyethylene/supercritical CO2 solutions , 2006 .

[18]  J. Dealy,et al.  Effects of Pressure and Supercritical Fluids on the Viscosity of Polyethylene , 2006 .

[19]  F. Wu,et al.  Measurement of Shear Viscosity and Solubility of Polystyrene Melts Containing Various Blowing Agents , 2005 .

[20]  A. Hrymak,et al.  Rheology studies of polyethylene/chemical blowing agent solutions within an injection molding machine , 2005 .

[21]  Chul B. Park,et al.  Effect of Supercritical Gas on Crystallization of Linear and Branched Polypropylene Resins with Foaming Additives , 2005 .

[22]  C. Macosko,et al.  Strain hardening in polypropylenes and its role in extrusion foaming , 2004 .

[23]  S. Selke,et al.  Relationship between cell morphology and impact strength of microcellular foamed high‐density polyethylene/polypropylene blends , 2004 .

[24]  Saeed Doroudiani,et al.  Polystyrene foams. III. Structure-tensile properties relationships , 2003 .

[25]  Zhiyi Zhang,et al.  CO2‐delayed crystallization of isotactic polypropylene: A kinetic study , 2003 .

[26]  Sergei G. Kazarian,et al.  Rheology of poly(propylene glycol) and suspensions of fumed silica in poly(propylene glycol) under high-pressure CO2 , 2003 .

[27]  Mitsuko Takada,et al.  Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate) , 2003 .

[28]  C. Tzoganakis,et al.  Rheological Properties of Polystyrene/Supercritical CO2 Solutions from an Extrusion Slit Die , 2003 .

[29]  J. R. Royer,et al.  High-pressure rheology and viscoelastic scaling predictions of polymer melts containing liquid and supercritical carbon dioxide , 2001 .

[30]  Mitsuko Takada,et al.  Effects of CO2 on crystallization kinetics of polypropylene , 2001 .

[31]  P. Wood-Adams,et al.  Thermorheological Behavior of Polyethylene: Effects of Microstructure and Long Chain Branching , 2001 .

[32]  C. Manke,et al.  Effects of Dissolved Gas on Viscoelastic Scaling and Glass Transition Temperature of Polystyrene Melts , 2001, Industrial & Engineering Chemistry Research.

[33]  Chul B. Park,et al.  Study of Shear and Extensional Viscosities of Biodegradable PBS/CO2 Solutions , 2001 .

[34]  J. R. Royer,et al.  High-pressure rheology of polystyrene melts plasticized with CO2: Experimental measurement and predictive scaling relationships , 2000 .

[35]  P. Lomellini,et al.  Melt rheology of randomly branched polystyrenes , 1999 .

[36]  C. Manke,et al.  Rheology of molten polystyrene with dissolved supercritical and near‐critical gases , 1999 .

[37]  A. Malmberg,et al.  Characteristics of long chain branching in ethene polymerization with single site catalysts , 1999 .

[38]  C. Manke,et al.  Concentration‐dependent viscoelastic scaling models for polydimethysiloxane melts with dissolved carbon dioxide , 1998 .

[39]  Chul B. Park,et al.  Extrusion of PE/PS blends with supercritical carbon dioxide , 1998 .

[40]  C. Manke,et al.  Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide , 1997 .

[41]  Subbu S. Venkatraman,et al.  A comparison of torsional and capillary rheometry for polymer melts: The Cox‐Merz rule revisited , 1990 .

[42]  W. Graessley,et al.  Thermorheological effects of long-chain branching in entangled polymer melts , 1986 .

[43]  K. Pae,et al.  The Effects of Hydrostatic Pressure on the Compressibility, Crystallization, and Melting of Polymers , 1975 .

[44]  F. N. Cogswell,et al.  Converging flow of polymer melts in extrusion dies , 1972 .

[45]  H. Fujita,et al.  Diffusion-controlled stress-relaxation in polymers, I , 1957 .

[46]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[47]  J. Ferry Mechanical Properties of Substances of High Molecular Weight. VI. Dispersion in Concentrated Polymer Solutions and its Dependence on Temperature and Concentration , 1950 .

[48]  Carl Barus,et al.  Isothermals, isopiestics and isometrics relative to viscosity , 1893, American Journal of Science.

[49]  Svante Arrhenius,et al.  Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .