An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers

In this paper we study linear forms with rational integer coefficients (, ), where the are algebraic numbers satisfying the so-called strong independence condition. In standard notation, we prove an explicit estimate of the form Its novel feature is that it contains no factors of the form .

[1]  E. Matveev LINEAR FORMS IN THE VALUES OF $ G$-FUNCTIONS, AND DIOPHANTINE EQUATIONS , 1983 .

[2]  Евгений Михайлович Матвеев,et al.  Явная нижняя оценка однородной рациональной линейной формы от логарифмов алгебраических чисел. II@@@An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II , 1998 .

[3]  T. N. Shorey On linear forms in the logarithms of algebraic numbers , 1976 .

[4]  M. Waldschmidt Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques , 1993, Canadian Journal of Mathematics.

[5]  The weighted sum of two S-units being a square , 1990 .

[6]  A. J. Poorten,et al.  Computing the effectively computable bound in Baker's inequality for linear forms in logarithms , 1976, Bulletin of the Australian Mathematical Society.

[7]  D. Bertrand,et al.  Duality on tori and multiplicative dependence relations , 1997, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[8]  Евгений Михайлович Матвеев,et al.  О последовательных минимумах расширенной логарифмической высоты алгебраических чисел@@@On the successive minima of the extended logarithmic height of algebraic numbers , 1999 .

[9]  N. Feldman Approximation of number π by algebraic numbers from special fields , 1977 .

[10]  H. Stark,et al.  On a Fundamental Inequality in Number Theory , 1971 .

[11]  E. Matveev On the successive minima of the extended logarithmic height of algebraic numbers , 1999 .

[12]  C. Stewart,et al.  On theabc conjecture , 1991 .

[13]  Michel Waldschmidt,et al.  A lower bound for linear forms in logarithms , 1980 .

[14]  E. Matveev,et al.  On Linear and Multiplicative Relations , 1994 .

[15]  E. Matveev On the arithmetic properties of the values of generalized binomial polynomials , 1993 .

[16]  Enrico Bombieri,et al.  On Siegel's lemma , 1983 .

[17]  A. Pajor,et al.  Sections of the unit ball of Ipn , 1988 .

[18]  A. J. Poorten On Baker's inequality for linear forms in logarithms , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[20]  Enrico Bombieri,et al.  Addendum to “On Siegel's lemma” , 1984 .

[21]  Maurice Mignotte,et al.  Linear forms in two logarithms and Schneider's method , 1978 .

[22]  Kunrui Yu P-ADIC LOGARITHMIC FORMS AND GROUP VARIETIES I , 1998 .

[23]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[24]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[25]  N I Fel'dman,et al.  IMPROVED ESTIMATE FOR A LINEAR FORM OF THE LOGARITHMS OF ALGEBRAIC NUMBERS , 1968 .

[26]  Y. Bugeaud,et al.  Bounds for the solutions of Thue-Mahler equations and norm form equations , 1996 .

[27]  G. Wüstholz,et al.  A new approach to Baker's theorem on linear forms in logarithms II , 1987 .

[28]  J. Vaaler A geometric inequality with applications to linear forms , 1979 .