Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots

We present a versatile non-contact micromanipulation approach using the rotational flows locally induced by rotation of spherical magnetic microrobots in liquid environments. Micro-scale objects in close vicinity to the rotating microrobot are trapped inside the induced rotational flows and carried along with the robot as it translates on a planar surface by rotational motion. The proposed approach can handle a wide range of object sizes, and manipulate objects larger than the robot and significantly denser than water. Trapping and transport of individual human myeloid leukemia cells and swimming flagellated bacteria using this method has also been demonstrated. The proposed approach requires no special surface pattern or spatial structure, and hence is directly compatible with existing microfluidic devices.

[1]  Hsi-Wen Tung,et al.  Noncontact manipulation using a transversely magnetized rolling robot , 2013 .

[2]  Li Zhang,et al.  Localized non-contact manipulation using artificial bacterial flagella , 2011 .

[3]  Metin Sitti,et al.  Remotely addressable magnetic composite micropumps , 2012 .

[4]  D. Grier A revolution in optical manipulation , 2003, Nature.

[5]  R. Muller,et al.  Silicon-processed overhanging microgripper , 1992 .

[6]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[7]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[8]  Metin Sitti,et al.  Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella , 2014, IEEE Transactions on Robotics.

[9]  Metin Sitti,et al.  Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Daniel Ahmed,et al.  Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[11]  Vijay Kumar,et al.  Automated biomanipulation of single cells using magnetic microrobots , 2013, Int. J. Robotics Res..

[12]  Y. Chisti,et al.  Hydrodynamic Damage to Animal Cells , 2001, Critical reviews in biotechnology.

[13]  Vahid Sandoghdar,et al.  Geometry-induced electrostatic trapping of nanometric objects in a fluid , 2010, Nature.

[14]  Metin Sitti,et al.  Control of Multiple Heterogeneous Magnetic Microrobots in Two Dimensions on Nonspecialized Surfaces , 2012, IEEE Transactions on Robotics.

[15]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[16]  Metin Sitti,et al.  Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators , 2012 .

[17]  Li Zhang,et al.  Selective trapping and manipulation of microscale objects using mobile microvortices. , 2012, Nano letters.

[18]  M. Sitti,et al.  Untethered micro-robotic coding of three-dimensional material composition , 2014, Nature Communications.

[19]  Li Zhang,et al.  Targeted cargo delivery using a rotating nickel nanowire. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[20]  Metin Sitti,et al.  Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. , 2014, Lab on a chip.

[21]  M. Sitti,et al.  Three‐Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro‐Grippers , 2014 .

[22]  Paolo Dario,et al.  Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[23]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[24]  Metin Sitti,et al.  Two-Dimensional Autonomous Microparticle Manipulation Strategies for Magnetic Microrobots in Fluidic Environments , 2012, IEEE Transactions on Robotics.

[25]  Metin Sitti,et al.  Control methodologies for a heterogeneous group of untethered magnetic micro-robots , 2011, Int. J. Robotics Res..

[26]  R. Pethig Review article-dielectrophoresis: status of the theory, technology, and applications. , 2010, Biomicrofluidics.

[27]  Fumihito Arai,et al.  Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations , 2012 .

[28]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[29]  R. Fleck,et al.  Use of HL-60 Cell Line To Measure Opsonic Capacity of Pneumococcal Antibodies , 2005, Clinical Diagnostic Laboratory Immunology.

[30]  Hyunjae Kang,et al.  Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[31]  Metin Sitti,et al.  Micro-Scale Mobile Robotics , 2013, Found. Trends Robotics.

[32]  Gregory Timp,et al.  Optimal optical trap for bacterial viability. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Metin Sitti,et al.  Miniature devices: Voyage of the microrobots , 2009, Nature.