Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration
暂无分享,去创建一个
Victor M. Calo | Lisandro Dalcín | Philippe A. Vignal | Adel Sarmiento | Adriano M. A. Côrtes | Lisandro Dalcin | V. Calo | P. Vignal | A. Sarmiento | A. Côrtes
[1] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[2] K. Kawasaki,et al. Anisotropic Spinodal Decomposition under Shear Flow , 1984 .
[3] Victor M. Calo,et al. Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system , 2015, J. Comput. Sci..
[4] Jorge L. Gonzalez-Velazquez,et al. Effect of spinodal decomposition on the mechanical behavior of Fe–Cr alloys , 2010 .
[5] Victor M. Calo,et al. An energy-stable convex splitting for the phase-field crystal equation , 2014, 1405.3488.
[6] John E. Hilliard,et al. Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .
[7] G. Hulbert,et al. A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .
[8] Xiaobing Feng,et al. Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..
[9] Victor M. Calo,et al. On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers , 2014 .
[10] Xesús Nogueira,et al. An unconditionally energy-stable method for the phase field crystal equation , 2012 .
[11] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[12] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .
[13] G. Batchelor,et al. An Introduction to Fluid Dynamics , 1968 .
[14] Lisandro Dalcin,et al. PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.
[15] Victor M. Calo,et al. Solving Nonlinear, High-Order Partial Differential Equations Using a High-Performance Isogeometric Analysis Framework , 2014, CARLA.
[16] Victor M. Calo,et al. The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .
[17] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[18] A. Wagner,et al. Phase Separation under Shear in Two-dimensional Binary Fluids , 1999, cond-mat/9904033.
[19] Moses,et al. String phase in phase-separating fluids under shear flow. , 1995, Physical review letters.
[20] Ju Liu,et al. Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..
[21] Victor M. Calo,et al. Phase Field Modeling Using PetIGA , 2013, ICCS.
[22] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[23] Turab Lookman,et al. Spinodal decomposition in binary fluids under shear flow , 1997 .
[24] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[25] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[26] T. Hughes,et al. Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .
[27] Olga Wodo,et al. Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..
[28] D. M. Anderson,et al. DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .
[29] Dirk G. A. L. Aarts,et al. Phase separating colloid polymer mixtures in shear flow , 2008 .
[30] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .
[31] Victor M. Calo,et al. The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..
[32] Akira Onuki. Phase transitions of fluids in shear flow , 1997 .
[33] Nikolas Provatas,et al. Phase-Field Methods in Materials Science and Engineering , 2010 .
[34] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[35] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .