Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration

Abstract In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.

[1]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[2]  K. Kawasaki,et al.  Anisotropic Spinodal Decomposition under Shear Flow , 1984 .

[3]  Victor M. Calo,et al.  Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system , 2015, J. Comput. Sci..

[4]  Jorge L. Gonzalez-Velazquez,et al.  Effect of spinodal decomposition on the mechanical behavior of Fe–Cr alloys , 2010 .

[5]  Victor M. Calo,et al.  An energy-stable convex splitting for the phase-field crystal equation , 2014, 1405.3488.

[6]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[7]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[8]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[9]  Victor M. Calo,et al.  On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers , 2014 .

[10]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[11]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[12]  R. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .

[13]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[14]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[15]  Victor M. Calo,et al.  Solving Nonlinear, High-Order Partial Differential Equations Using a High-Performance Isogeometric Analysis Framework , 2014, CARLA.

[16]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[17]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[18]  A. Wagner,et al.  Phase Separation under Shear in Two-dimensional Binary Fluids , 1999, cond-mat/9904033.

[19]  Moses,et al.  String phase in phase-separating fluids under shear flow. , 1995, Physical review letters.

[20]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[21]  Victor M. Calo,et al.  Phase Field Modeling Using PetIGA , 2013, ICCS.

[22]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[23]  Turab Lookman,et al.  Spinodal decomposition in binary fluids under shear flow , 1997 .

[24]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[25]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[26]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[27]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[28]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[29]  Dirk G. A. L. Aarts,et al.  Phase separating colloid polymer mixtures in shear flow , 2008 .

[30]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[31]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[32]  Akira Onuki Phase transitions of fluids in shear flow , 1997 .

[33]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[34]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[35]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .