Functorial relationships between lattice-valued topology and topological systems

This paper investigates functorial relationships between lattice-valued topology (arising from fuzzy sets and fuzzy logic) and topological systems (arising from topological and localic aspects of domains and finite observational logic in computer science). Two such relationships are embeddings from TopSys into Loc-Top, both having two fold significance: for computer science the significance is that TopSys is not topological over Set × Loc, yet Loc-Top is topological over Set × Loc; hence these embeddings can be used to construct in Loc-Top the unique initial [final] lifts of all forgetful functor structured sources [sinks] in TopSys; and for topology, the significance is that both embeddings generate anti-stratified topological spaces from ordinary topological spaces and spatial locales rewritten as topological systems, thus justifying the current structural axioms of Loc-Top and lattice-valued topology (which include all anti-stratified, non-stratified, and stratified spaces).

[1]  V. E. Cazanescu Algebraic theories , 2004 .

[2]  U. Höhle Upper semicontinuous fuzzy sets and applications , 1980 .

[3]  Ulrich Höhle,et al.  Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory , 1998 .

[4]  Dona Papert,et al.  Sur les treillis des ouverts et les paratopologies , 1958 .

[5]  Patrik Eklund Category theoretic properties of fuzzy topological spaces , 1984 .

[6]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[7]  L. N. Stout,et al.  Foundations of fuzzy sets , 1991 .

[8]  A. Pultr,et al.  Category theoretic aspects of chain-valued frames: Part I: Categorical and presheaf theoretic foundations , 2008, Fuzzy Sets Syst..

[9]  Wesley Kotzé SOBRIETY AND SEMI-SOBRIETY OF L-TOPOLOGICAL SPACES , 2001 .

[10]  Sergey A. Solovyov,et al.  Categories of lattice-valued sets as categories of arrows , 2006, Fuzzy Sets Syst..

[11]  Tomasz Kubiak,et al.  The Topological Modification of the L-fuzzy Unit Interval , 1992 .

[12]  Joseph A. Goguen,et al.  The fuzzy tychonoff theorem , 1973 .

[13]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[14]  John N. Mordeson,et al.  Fuzzy Topological Spaces , 2001 .

[15]  Stephen E. Rodabaugh,et al.  A categorical accommodation of various notions of fuzzy topology , 1983 .

[16]  Samson Abramsky,et al.  Domain Theory and the Logic of Observable Properties , 2011, ArXiv.

[17]  John R. Isbell,et al.  Atomless Parts of Spaces. , 1972 .

[18]  B. Hutton Normality in fuzzy topological spaces , 1975 .

[19]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[21]  Cosimo Guido,et al.  THE SUBSPACE PROBLEM IN THE TRADITIONAL POINT-SET CONTEXT OF FUZZY TOPOLOGY , 1997 .

[22]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[23]  Sergey A. Solovyov,et al.  On the category Set(JCPos) , 2006, Fuzzy Sets Syst..

[24]  Patrik Eklund A comparison of lattice-theoretic approaches to fuzzy topology , 1986 .

[25]  Cosimo Guido,et al.  Structured lattices and ground categories of L-sets , 2005, Int. J. Math. Math. Sci..

[26]  R. Lowen Fuzzy topological spaces and fuzzy compactness , 1976 .

[27]  Cosimo Guido,et al.  Fuzzy topological properties and hereditariness , 2003, Fuzzy Sets Syst..

[28]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[29]  Alexander P. Sostak,et al.  Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .