Phase‐Change Memory Materials by Design: A Strain Engineering Approach

Van der Waals heterostructure superlattices of Sb2 Te1 and GeTe are strain-engineered to promote switchable atomic disordering, which is confined to the GeTe layer. Careful control of the strain in the structures presents a new degree of freedom to design the properties of functional superlattice structures for data storage and photonics applications.

[1]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[2]  R. O. Jones,et al.  Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study , 2012 .

[3]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[4]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[5]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[6]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[7]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[8]  T Uruga,et al.  Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. , 2011, Nature chemistry.

[9]  Noboru Yamada,et al.  Crystal structures of X‐phase in the Sb–Te binary alloy system , 2013 .

[10]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[11]  C. Thompson Structure Evolution During Processing of Polycrystalline Films , 2000 .

[12]  M. Tai,et al.  1T-1R pillar-type topological-switching random access memory (TRAM) and data retention of GeTe/Sb2Te3 super-lattice films , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[13]  T. Morikawa,et al.  55-µA GexTe1−x/Sb2Te3 superlattice topological-switching random access memory (TRAM) and study of atomic arrangement in Ge-Te and Sb-Te structures , 2014, 2014 IEEE International Electron Devices Meeting.

[14]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[15]  B. Kooi,et al.  Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. , 2014, Nano letters.

[16]  C. Bergman,et al.  Structure of Sb2Te , 1991 .

[17]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[18]  Y. Mishin,et al.  Atomistic modeling of interfaces and their impact on microstructure and properties , 2010 .

[19]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[20]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[21]  N. Yamada,et al.  Extremely long period-stacking structure in the Sb-Te binary system. , 2005, Acta crystallographica. Section B, Structural science.

[22]  Tae Hoon Lee,et al.  Tailoring Transient-Amorphous States: Towards Fast and Power-Efficient Phase-Change Memory and Neuromorphic Computing , 2014, Advanced materials.

[23]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[24]  A. V. Kolobov,et al.  Enhanced crystallization of GeTe from an Sb2Te3 template , 2012 .

[25]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[26]  Hyunjung Shin,et al.  Graphene-Templated Synthesis of c-Axis Oriented Sb2Te3 Nanoplates by the Microwave-Assisted Solvothermal Method , 2015 .

[27]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[28]  Valerio Pruneri,et al.  Active Control of Surface Plasmon Waveguides with a Phase Change Material , 2015 .

[29]  Junji Tominaga,et al.  Self‐organized van der Waals epitaxy of layered chalcogenide structures , 2015 .

[30]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[31]  Hong‐Bo Sun,et al.  Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application. , 2014, ACS applied materials & interfaces.

[32]  Q. Xue,et al.  Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. , 2011, Physical review letters.

[33]  Giovanni Isella,et al.  Scaling Hetero-Epitaxy from Layers to Three-Dimensional Crystals , 2012, Science.

[34]  Robert E. Simpson,et al.  A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation , 2015, Scientific Reports.

[36]  J. Narayan,et al.  Domain epitaxy: A unified paradigm for thin film growth , 2003 .

[37]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[38]  Jianhui Yang,et al.  Hydrothermal Synthesis and Thermoelectric Transport Properties of Impurity‐Free Antimony Telluride Hexagonal Nanoplates , 2008 .

[39]  Won-Sa Kim Solid state phase equilibria in the Pt–Sb–Te system , 1997 .

[40]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[41]  Valerio Pruneri,et al.  Time-domain separation of optical properties from structural transitions in resonantly bonded materials. , 2014, Nature materials.

[42]  K. Shiraishi,et al.  GeTe sequences in superlattice phase change memories and their electrical characteristics , 2014 .

[43]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[44]  T. Yamamoto,et al.  Charge-injection phase change memory with high-quality GeTe/Sb2Te3 superlattice featuring 70-μA RESET, 10-ns SET and 100M endurance cycles operations , 2013, 2013 IEEE International Electron Devices Meeting.

[45]  R. Arghavani,et al.  Stress management in sub-90-nm transistor architecture , 2004, IEEE Transactions on Electron Devices.

[46]  Shuichi Murakami,et al.  Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices , 2015, Science and technology of advanced materials.

[47]  Kinam Kim,et al.  Phase-Change Behavior of Stoichiometric Ge2Sb2Te5 in Phase-Change Random Access Memory , 2007 .

[48]  John Robertson,et al.  Modeling of switching mechanism in GeSbTe chalcogenide superlattices , 2015, Scientific Reports.

[49]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[50]  Songlin Feng,et al.  Sb-rich Si-Sb-Te phase change material for multilevel data storage: The degree of disorder in the crystalline state , 2011 .

[51]  Role of Ge Switch in Phase Transition: Approach using Atomically Controlled GeTe/Sb2Te3 Superlattice , 2008 .

[52]  T. Morikawa,et al.  A 50-nm 1.2-V GexTe1−x/Sb2Te3 superlattice topological-switching random-access memory (TRAM) , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).