Robust sparse image reconstruction of radio interferometric observations with PURIFY

Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

[1]  F. Schwab,et al.  Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry , 1984 .

[2]  N. Aghanim,et al.  ATCA observations of the MACS-Planck Radio Halo Cluster Project - I. New detection of a radio halo in PLCK G285.0-23.7 , 2016, 1608.06857.

[3]  J. L. Pawsey,et al.  Solar radiation at radio frequencies and its relation to sunspots , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  T. Jones,et al.  RADIO GALAXY NGC 1265 UNVEILS THE ACCRETION SHOCK ONTO THE PERSEUS GALAXY CLUSTER , 2010, 1004.3540.

[5]  Christopher L. Williams,et al.  GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue , 2016, 1610.08318.

[6]  G. Woan,et al.  A generalized measurement equation and van Cittert‐Zernike theorem for wide‐field radio astronomical interferometry , 2008, 0812.0141.

[7]  J. D. McEwen,et al.  Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio‐interferometric imaging , 2012, 1205.3123.

[8]  S. J. Tingay,et al.  Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array , 2016, 1602.02247.

[9]  Michael Stuart,et al.  Understanding Robust and Exploratory Data Analysis , 1984 .

[10]  A. R. Whitney,et al.  THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY , 2016, 1605.06978.

[11]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[12]  Spheroidal Functions. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Johnston-Hollitt,et al.  Using head–tail galaxies to constrain the intracluster magnetic field: an in-depth study of PKS J0334−3900 , 2013, 1303.2847.

[14]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[15]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[16]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[17]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[18]  R. F. Cardoso,et al.  Bent-Double Radio Sources as Probes of Intergalactic Gas , 2008, 0806.3971.

[19]  Danny C. Price,et al.  Generalized formalisms of the radio interferometer measurement equation , 2015, 1501.06447.

[20]  Jean-Philippe Thiran,et al.  Sparsity Averaging for Compressive Imaging , 2012, IEEE Signal Processing Letters.

[21]  J. D. McEwen,et al.  Revisiting the spread spectrum effect in radio interferometric imaging: a sparse variant of the w-projection algorithm , 2013, 1307.3424.

[22]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[23]  A. M. M. Scaife,et al.  Simulating full‐sky interferometric observations , 2008, 0803.2165.

[24]  Yves Wiaux,et al.  PURIFY: a new approach to radio-interferometric imaging , 2013, 1307.4370.

[25]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[26]  J. Habener,et al.  Inactivation of calcitonin by specific organs. , 1972, Nature: New biology.

[27]  F. Zernike The concept of degree of coherence and its application to optical problems , 1938 .

[28]  Oleg M. Smirnov,et al.  Revisiting the radio interferometer measurement equation - IV. A generalized tensor formalism , 2011, 1106.0579.

[29]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[30]  T. Murphy,et al.  Limits on low-frequency radio emission from southern exoplanets with the Murchison Widefield Array , 2014, 1410.6819.

[31]  Yannick Boursier,et al.  Spread spectrum for imaging techniques in radio interferometry , 2009, ArXiv.

[32]  S. Bhatnagar,et al.  Scale sensitive deconvolution of interferometric images - I. Adaptive Scale Pixel (Asp) decomposition , 2004 .

[33]  David Mary,et al.  MORESANE: MOdel REconstruction by Synthesis-ANalysis Estimators - A sparse deconvolution algorithm for radio interferometric imaging , 2014, 1412.5387.

[34]  F. Hoog,et al.  The application of compressive sampling to radio astronomy - II. Faraday rotation measure synthesis , 2011, 1106.1709.

[35]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[36]  R. Sault,et al.  An approach to interferometric mosaicing , 1996 .

[37]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[38]  B. D. Jeffs,et al.  The Australian Square Kilometre Array Pathfinder: System Architecture and Specifications of the Boolardy Engineering Test Array , 2014, Publications of the Astronomical Society of Australia.

[39]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[40]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[41]  J. D. McEwen,et al.  Compressed sensing for wide-field radio interferometric imaging , 2010, 1010.3658.

[42]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[43]  G. C. Perola,et al.  Active Galaxies with Radio Trails in Clusters , 1972, Nature.

[44]  John R. Carson The Heaviside operational calculus , 1922 .

[45]  U. Rau,et al.  Efficient implementation of the adaptive scale pixel decomposition algorithm , 2016 .

[46]  Melanie Johnston-Hollitt,et al.  An improved method for polarimetric image restoration in interferometry , 2016, 1606.01482.

[47]  G. Pratt,et al.  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 04/17/13 REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS , 2022 .

[48]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[49]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[50]  J. Anderson,et al.  LOFAR sparse image reconstruction , 2014, 1406.7242.

[51]  India.,et al.  A Case for Renewed Activity in the Giant Radio Galaxy J0116?473 , 2002, astro-ph/0209570.

[52]  Tim J. Cornwell,et al.  Multiscale CLEAN Deconvolution of Radio Synthesis Images , 2008, IEEE Journal of Selected Topics in Signal Processing.

[53]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[54]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[55]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[56]  Jean-Philippe Thiran,et al.  Scalable splitting algorithms for big-data interferometric imaging in the SKA era , 2016, 1601.04026.

[57]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[58]  S. Randall,et al.  THE MERGER ENVIRONMENT OF THE WIDE ANGLE TAIL HOSTING CLUSTER A562 , 2010, 1010.4297.

[59]  A. R. Whitney,et al.  The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667 , 2014, 1408.3167.

[60]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[61]  Martin Ryle,et al.  The Synthesis of Large Radio Telescopes , 1960 .

[62]  Feng Li,et al.  The application of compressive sampling to radio astronomy I: Deconvolution , 2011, 1106.1711.

[63]  L. Rudnick,et al.  COMPARISON OF ALGORITHMS FOR DETERMINATION OF ROTATION MEASURE AND FARADAY STRUCTURE. I. 1100–1400 MHZ , 2014, 1409.4151.

[64]  G. Pratt,et al.  The ATCA REXCESS Diffuse Emission Survey (ARDES) – I. Detection of a giant radio halo and a likely radio relic , 2016 .