Sub-nanosecond Yb:KLu(WO4)2 microchip laser.

A diode-pumped Yb:KLu(WO<sub>4</sub>)<sub>2</sub> microchip laser passively Q-switched by a Cr<sup>4+</sup>:YAG saturable absorber generated a maximum average output power of 590 mW at 1031 nm with a slope efficiency of 55%. The pulse characteristics were 690 ps/47.6 μJ at a pulse repetition frequency of 12.4 kHz. The output beam had an excellent circular profile with M<sup>2</sup><1.05. Yb:KLu(WO<sub>4</sub>)<sub>2</sub> is very promising for ultrathin sub-ns microchip lasers.

[1]  Yehoshua Kalisky,et al.  Cr4+-doped crystals: their use as lasers and passive Q-switches , 2004 .

[2]  Xavier Mateos,et al.  Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power. , 2014, Optics letters.

[3]  K. Ueda,et al.  Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser , 2006 .

[4]  Ken-ichi Ueda,et al.  Laser Damage Threshold of Ceramic YAG , 2003 .

[5]  Xavier Mateos,et al.  Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate , 2006 .

[6]  N V Kuleshov,et al.  Thermal lens study in diode pumped Ng- and Np-cut Nd:KGd(WO4)2 laser crystals. , 2009, Optics express.

[7]  Xavier Mateos,et al.  Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes. , 2007, Optics letters.

[8]  A. Lagatsky,et al.  Diode-pumped CW lasing of Yb:KYW and Yb:KGW , 1999 .

[9]  J. Zayhowski,et al.  Diode-pumped passively Q-switched picosecond microchip lasers. , 1994, Optics letters.

[10]  Xavier Mateos,et al.  Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber. , 2015, Optics letters.

[11]  U. Keller,et al.  A passively Q-switched Yb:YAG microchip laser , 2001 .

[12]  Valentin Petrov,et al.  Power scaling of a continuous-wave and passively Q-switched Yb:KLu(WO4)2 laser end-pumped by a high-power diode , 2007 .

[13]  U. Griebner,et al.  Continuous-wave lasing of a stoichiometric Yb laser material: KYb(WO4)2. , 2003, Optics Letters.

[14]  Valentin Petrov,et al.  Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion. , 2005, Optics letters.

[15]  G. Erbert,et al.  Passively mode-locked Yb:KLu(WO4)2 oscillators. , 2005, Optics express.

[16]  Xavier Mateos,et al.  Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes , 2014 .

[17]  Konstantin V. Yumashev,et al.  Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates , 2007 .

[18]  N. Kuleshov,et al.  Highly efficient 12  W diode-pumped actively Q-switched Yb:KGd(WO4)2 laser. , 2014, Optics letters.

[19]  Konstantin V. Yumashev,et al.  14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations , 2013 .

[20]  Hideki Yagi,et al.  Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers. , 2007, Optics express.

[21]  Xavier Mateos,et al.  Prospects of monoclinic Yb:KLu(WO 4 ) 2 crystal for multi-watt microchip lasers , 2015 .

[22]  U. Griebner,et al.  Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO 4 ) 2 , 2002 .

[23]  A. Lagatsky,et al.  Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO(4))(2) laser. , 2000, Optics letters.

[24]  S. Li,et al.  Thermal lensing in an end-pumped Yb:KGW slab laser with high power single emitter diodes. , 2008, Optics express.

[25]  Xavier Mateos,et al.  Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host , 2007 .

[26]  K. K. Lee,et al.  Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser , 1995 .

[27]  G. Boulon,et al.  Comparative Performance of Passively Q-Switched Diode-Pumped Yb $^{3+}$-Doped Tungstate and Garnet Lasers Using Cr $^{4+}$:YAG Saturable Absorber , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  P. Loiko,et al.  Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb) , 2011 .

[29]  F. Kärtner,et al.  56-ps passively Q-switched diode-pumped microchip laser. , 1997, Optics letters.

[30]  U. Griebner,et al.  Efficient Yb:KGW lasers end-pumped by high-power diode bars , 2006 .

[31]  V. Petrov,et al.  Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host. , 2008, Optics express.