Wiretap Channel With Side Information

This correspondence gives an achievable rate equivocation region for the discrete memoryless wiretap channel with side information. We extend our results to the Gaussian case. The main contribution of this correspondence is that, for the Gaussian wiretap channel, the side information helps to get a larger secrecy capacity and a larger rate equivocation region.

[1]  Ender Tekin,et al.  Achievable Rates for Two-Way Wire-Tap Channels , 2007, 2007 IEEE International Symposium on Information Theory.

[2]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[3]  Jean-Paul M. G. Linnartz,et al.  New Shielding Functions to Enhance Privacy and Prevent Misuse of Biometric Templates , 2003, AVBPA.

[4]  Ueli Maurer,et al.  Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free , 2000, EUROCRYPT.

[5]  Harold F. Mattson,et al.  The weight-distribution of a coset of a linear code (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[6]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[7]  Andrea J. Goldsmith,et al.  Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels , 2003, IEEE Trans. Inf. Theory.

[8]  Ender Tekin,et al.  The Gaussian Multiple Access Wire-Tap Channel with Collective Secrecy Constraints , 2006, 2006 IEEE International Symposium on Information Theory.

[9]  G. Zemor,et al.  Syndrome-coding for the wiretap channel revisited , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[10]  Abbas El Gamal,et al.  On the capacity of computer memory with defects , 1983, IEEE Trans. Inf. Theory.

[11]  Sik K. Leung-Yan-Cheong On a special class of wiretap channels (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[12]  Chen Yan-ling ElGamal cryptosystem and digital signature scheme based on polynomials over finite fields , 2005 .

[13]  Marten van Dijk On a special class of broadcast channels with confidential messages , 1997, IEEE Trans. Inf. Theory.

[14]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[15]  Thomas M. Cover,et al.  Comments on Broadcast Channels , 1998, IEEE Trans. Inf. Theory.

[16]  Imre Csiszár,et al.  Secrecy capacities for multiple terminals , 2004, IEEE Transactions on Information Theory.

[17]  Hirosuke Yamamoto,et al.  A coding theorem for secret sharing communication systems with two Gaussian wiretap channels , 1991, IEEE Trans. Inf. Theory.

[18]  A. Sridharan Broadcast Channels , 2022 .

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  Young-Han Kim,et al.  Multiple user writing on dirty paper , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  Toshiyasu Matsushima,et al.  An Algorithm for Computing the Secrecy Capacity of Broadcast Channels with Confidential Messages , 2007, 2007 IEEE International Symposium on Information Theory.

[22]  A. J. Han Vinck,et al.  An achievable region for the Gaussian wiretap channel with side information , 2006, IEEE Transactions on Information Theory.

[23]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[24]  Neri Merhav Shannon's Secrecy System With Informed Receivers and its Application to Systematic Coding for Wiretapped Channels , 2008, IEEE Transactions on Information Theory.

[25]  Hirosuke Yamamoto Coding theorem for secret sharing communication systems with two noisy channels , 1989, IEEE Trans. Inf. Theory.

[26]  David Tse,et al.  Sum capacity of the multiple antenna Gaussian broadcast channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[27]  Wei Yu,et al.  Sum capacity of Gaussian vector broadcast channels , 2004, IEEE Transactions on Information Theory.

[28]  Imre Csiszár,et al.  Common randomness and secret key generation with a helper , 2000, IEEE Trans. Inf. Theory.

[29]  N. Kiyavash,et al.  Secure Smartcard-Based Fingerprint Authentication ∗ , 2003 .

[30]  Hirosuke Yamamoto Rate-distortion theory for the Shannon cipher system , 1997, IEEE Trans. Inf. Theory.

[31]  Bin Dai,et al.  Wiretap Channel With Side Information , 2006, ArXiv.

[32]  Ross J. Anderson,et al.  Combining cryptography with biometrics effectively , 2005 .

[33]  János Körner,et al.  General broadcast channels with degraded message sets , 1977, IEEE Trans. Inf. Theory.

[34]  Amos Lapidoth,et al.  The Gaussian watermarking game , 2000, IEEE Trans. Inf. Theory.

[35]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[36]  Martin E. Hellman,et al.  A note on Wyner's wiretap channel (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[37]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[38]  Chaichana Mitrpant Information hiding: an application of wiretap channels with side information , 2003 .

[39]  Edward C. van der Meulen,et al.  A survey of multi-way channels in information theory: 1961-1976 , 1977, IEEE Trans. Inf. Theory.

[40]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[41]  Edward C. van der Meulen,et al.  Random coding theorems for the general discrete memoryless broadcast channel , 1975, IEEE Trans. Inf. Theory.

[42]  Katalin Marton,et al.  A coding theorem for the discrete memoryless broadcast channel , 1979, IEEE Trans. Inf. Theory.

[43]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[44]  Ueli Maurer,et al.  Secret-key agreement over unauthenticated public channels II: the simulatability condition , 2003, IEEE Trans. Inf. Theory.

[45]  Madhu Sudan,et al.  A Fuzzy Vault Scheme , 2006, Des. Codes Cryptogr..

[46]  Thomas M. Cover,et al.  An achievable rate region for the broadcast channel , 1975, IEEE Trans. Inf. Theory.

[47]  R. Gallager Information Theory and Reliable Communication , 1968 .

[48]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[49]  Aaron D. Wyner,et al.  A theorem on the entropy of certain binary sequences and applications-II , 1973, IEEE Trans. Inf. Theory.

[50]  I. Motivation,et al.  Secret-Key Agreement Over Unauthenticated Public Channels—Part III: Privacy Amplification , 2003 .

[51]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[52]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[53]  Gilles Zémor,et al.  Generalized coset schemes for the wire-tap channel: application to biometrics , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[54]  T. Cover,et al.  Writing on colored paper , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[55]  Marc Joye,et al.  Cryptanalysis of Two Group Signature Schemes , 1999, ISW.

[56]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[57]  Joseph A. O'Sullivan,et al.  Information-theoretic analysis of information hiding , 2003, IEEE Trans. Inf. Theory.

[58]  S. K. Leung-Yan-Cheong On a special class of wiretap channels , 1976 .

[59]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[60]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[61]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[62]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.